AKM

AK9813B 12ch 8bit D/A Converter with EEPROM

General Description

The AK9813B includes 12 channel, 8bit D/A converters with on-chip output buffer amps and it is capable to store the input digital data of each DAC by on-chip non-volatile CMOS EEPROM. The AK9813B is optimally designed for various circuit adjustments for consumer and industrial equipments and it is ideally suited for replacing mechanical trimmers.

Analog section : 4.5V to 5.5V, 2.7V to 3.6V

□ 24pin VSOP

Block Diagram

Ordering Guide

Model	Temp. Range	Package
AK9813BF	-40 to +85°C	24-pin VSOP

Pin Layout

24pin VSOP

- 2 -

No.	Pin Name	I/O	Function
20	DI	Ι	Serial Data Input Pin SEL=High : 16bit data input format SEL=Low : 14bit data input format
17	DO	0	(SEL=High: CS I/F) AK9813B reads out the data with LSB first in the 16bit shift register to DO pin synchronously with falling edge of CLK. When the \overline{CS} pin is high level, the DO pin becomes high impedance. In STATUS mode, the DO pin outputs Ready/Busy status.
			(SEL=Low: LD I/F) AK9813B reads out the data with MSB first in the 14bit shift register to DO pin synchronously with falling edge of CLK. In WRITE mode, the DO pin outputs Ready/Busy status.
19	CLK	Ι	Shift Clock Input Pin (Schmitt-trigger input) AK9813B takes in the data from DI pin synchronously with rising edge of the CLK pin. The data are transferred to the internal shift register.
18	<u>C</u> S/LD	Ι	Chip Select Input Pin (Schmitt-trigger input) The CS/LD is internally pulled up to VCC. (SEL=High: CS I/F) After the CS pin changes from high level to low level while the CLK pin is high level, the AK9813B can input the data to the internal shift register and takes in the data from the DI pin synchronously with the rising edge of the CLK pin. After the CS pin changes from high level to low level while the CLK pin is low level, the AK9813B becomes the status mode and reads out the Ready/Busy status to the DO pin. When the CS pin changes from low level to high level regardless of Low/High level of the CLK pin, the AK9813B removes from the status mode to the normal mode. The CS pin usually should be kept at high level.
			(SEL=Low: LD I/F) When the LD pin receives high pulse, the data of the internal shift register is transferred to the internal decoder or the register for D/A. The LD pin usually should be kept at low level.

- 3 -

Pin Description (2)

No.	Pin Name	I/O	Function				
1 12	AO1 AO12	0	8bit D/A outputs with OP-AMP				
14	VCC		Digital section Power Supply Pin				
23	GND	_	Digital section Ground Pin				
13	VDD		OP-AMP and D/A section Power Supply				
24	VSS	—	OP-AMP and D/A section Ground				
21 22	EA0 EA1	I	(SEL=High: CS I/F) In AUTO READ operation and ECL operation, the address of EEPROM is selected by the EA0 and the EA1 pins. (SEL=Low: LD I/F) The address of EEPROM is selected by the EA0 and the EA1 pins.				
16	ECL	I	When the ECL pin receives high pulse, the data in EEPROM is automatically loaded to each corresponding D/A, starting from AO1 to AO12 in order. Then each D/A output is settled to pre-determined value.				
15	SEL	Ι	Input Data Format Select Pin SEL=High : CS I/F SEL=Low : LD I/F After power-up, this pin should be kept either at "high" or "Low."				

Data Configuration

AK9813B have a shift register in order to control the chip.

When the SEL pin is "H"(CS I/F), the shift register becomes 16bit configuration and the data on the DI pin should be loaded with LSB first. When the SEL pin is "L"(LD I/F), the shift register becomes 14bit configuration and the data on the DI pin is loaded with MSB first.

The following description shows the configuration of the shift register.

The data set consist of 2-bits for the control of the internal EEPROM, 2-bits for the address of the EEPROM (CS I/F only), 4-bits for select of D/A converter and 8-bits for the digital input data of the 8bit D/A converter and total data set is 16bits or 14bits.

① Shift register configuration: SEL=High (CS I/F)

MSB Last														\longrightarrow	LSB First
A1	A0	CL	WR	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
EEPR ADDF		EEPF CON ⁻			LECTION			<		DIGIT/ FOR [AL INP D/A CC				

OUTPUT VOLTAGE FOR D/A CONVERTER

D7	D6	D5	D4	D3	D2	D1	D0	OUTPUT VOLTAGE FOR D/A
0	0	0	0	0	0	0	0	≒ GND=VSS
0	0	0	0	0	0	0	1	≒ VDD/255 x 1
0	0	0	0	0	0	1	0	≒ VDD/255 x 2
1	1	1	1	1	1	1	0	≒ VDD/255 x 254
1	1	1	1	1	1	1	1	≒ VDD

A1	A0	EEPROM ADDRESS
0	0	ADDRESS: 0
0	1	ADDRESS: 1
1	0	ADDRESS: 2
1	1	ADDRESS: 3

D/A CONVERTER CHANNEL SELECTION

D11	D10	D9	D8	D/A CHANNEL
0	0	0	0	Don't Care
0	0	0	1	AO1
0	0	1	0	AO2
0	0	1	1	AO3
0	1	0	0	AO4
0	1	0	1	AO5
0	1	1	0	AO6
0	1	1	1	AO7

D11	D10	D9	D8	D/A CHANNEL
1	0	0	0	AO8
1	0	0	1	AO9
1	0	1	0	AO10
1	0	1	1	AO11
1	1	0	0	AO12
1	1	0	1	Can't use
1	1	1	0	Can't use
1	1	1	1	Don't Care

(NOTE) Above "Don't Care" state is valid only when AK9813B is in DAC mode or WRITE mode. Refer to the following section "Instruction Set" about mode.

② Shift register configuration: SEL=Low (LD I/F)

LSB Last		5				,							MSI > Firs	
D0	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	WR	CL	
<			al INF D/a CC				>			ON FC VERTE		EEPF CON ⁻		

OUTPUT VOLTAGE FOR D/A CONVERTER

D0	D1	D2	D3	D4	D5	D6	D7	OUTPUT VOLTAGE FOR D/A
0	0	0	0	0	0	0	0	≒ GND=VSS
1	0	0	0	0	0	0	0	≒ VDD/255 x 1
0	1	0	0	0	0	0	0	≒ VDD/255 x 2
0	1	1	1	1	1	1	1	≒ VDD/255 x 254
1	1	1	1	1	1	1	1	≒ VDD

EA1	EA0	EEPROM ADDRESS
0	0	ADDRESS: 0
0	1	ADDRESS: 1
1	0	ADDRESS: 2
1	1	ADDRESS: 3
	`	

NOTE)

EEPROM ADDRESS is selected by the EA0 and EA1 pins.

D/A CONVERTER CHANNEL SELECTION

D8	D9	D10	D11	D/A CHANNEL
0	0	0	0	Don't Care
0	0	0	1	AO1
0	0	1	0	AO2
0	0	1	1	AO3
0	1	0	0	AO4
0	1	0	1	AO5
0	1	1	0	AO6
0	1	1	1	AO7

D8	D9	D10	D11	D/A CHANNEL
1	0	0	0	AO8
1	0	0	1	AO9
1	0	1	0	AO10
1	0	1	1	AO11
1	1	0	0	AO12
1	1	0	1	Can't use
1	1	1	0	Can't use
1	1	1	1	Don't Care

(NOTE) Above "Don't Care" state is valid only when AK9813B is in DAC mode or WRITE mode. Refer to the following section "Instruction Set" about mode. Instruction Set

The AK9813B can be controlled for the following mode. The following mode is common to the LD I/F and the CS IF. When LD I/F is selected, "A1" and "A0" are set by the external pins (EA0 pin and EA1 pin).

(1) DAC mode (External DI pin \rightarrow D/A converter)

A1	A0	CL	WR	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Function
Х	Х	0	0	D	A CH	ANNE	ΞL			Digi	tal Da	ta for	D/A			D/A output

②CALL mode (Internal EEPROM -> D/A converter)

A1	A0	CL	WR	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0		Function
ADD	RESS	1	0	D	A CH	ANNE	EL	Х	Х	Х	Х	Х	Х	Х	Х	READ	

• The output of D/A converter is set by the data in the internal EEPROM.

③ALL CALL mode (Internal EEPROM -> D/A converter)

A1	A0	CL	WR	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Function
ADDF	RESS	1	0	0	0	0	0	Х	Х	Х	Х	Х	Х	Х	Х	ALL CHANNEL READ

• The outputs of all D/A converters are set by the data in the internal EEPROM.

...Internal ECL function

[X: Don't Care]

(4) WRITE ENABLE mode (Internal EEPROM WRITE ENABLE)

A1	A0	CL	WR	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Function
Х	Х	1	1	0	0	0	0	Х	Х	Х	Х	Х	Х	Х	Х	WRITE ENABLE

•After WRITE ENABLE mode is executed, the programming to the internal EEPROM is enabled. Upon power-up and after the execution of the ECL function, the AK9813B is in the programming disable state.

(5) WRITE DISABLE mode (Internal EEPROM WRITE DISABLE)

A1	A0	CL	WR	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Function
Х	Х	1	1	1	1	1	1	Х	Х	Х	Х	Х	Х	Х	Х	WRITE DISABLE

•After WRITE DISABLE mode is executed, the programming to the internal EEPROM is disabled.

6 WRITE mode (External DI pin -> Internal EEPROM)

A1	A0	CL	WR	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Function
ADD	RESS	0	1	D/	/A CH	ANNE	ΞL			Digi	tal Da	ta for	D/A			WRITE

• The digital data for D/A (D0 to D7) is written into the specified address in the internal EEPROM. The state of the internal EEPROM must be the programming enable state.

⑦READ mode (Internal EEPROM -> External DO pin)

A1	A0	CL	WR	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Function
ADD	RESS	1	1	D/	A CH	ANNE	ΞL	Х	Х	Х	Х	Х	Х	Х	Х	EEPROM DATA output

• The DO pin outputs the data in the internal EEPROM synchronously with the falling edge of the input pulse of the CLK pin.

- 7 -

[AK9813B]

[X: Don't Care]

	Functional Description
	Diagram for CS I/F (SEL="H") ode: The internal EEPROM is not used.
DI	(D0) D1) D2) D3) D4) D5) D6) D7) D8) D9) D10) D11) WR CL (A0) A1
CLK	
CS/LD	
DO	
AO1 - 12	X

2. WRITE ENABLE/DISABLE mode: The programming state of the internal EEPROM is set.

3. CALL mode: The output of the D/A is set by the data in the internal EEPROM.

4. ALL CALL mode: The outputs of the all D/As are set by the data in the internal EEPROM.

•The D/A outputs are set from AO1 to AO12 in order.

5. WRITE mode: The digital input data for D/A converter is written into the internal EEPROM.

6. READ mode: The data in the internal EEPROM is read from the DO pin.

7. STATUS mode: The DO pin outputs the Ready/Busy status from the DO pin.

8. ECL function: For "H" pulse to the ECL pin, the data in the selected address in the internal EEPROM is automatically loaded. Then each D/A converter output is settled to pre-determined value.

9. Transfer mode for the cascade connection

In case that AK9813B devices are connected in cascade, the AK9813B under programming cycle can transfer the data to the other AK9813B. The some AK9813B devices can be operated by the common \overline{CS} signal at the same time.

Please note that the input data into to the AK9813B under programming cycle should be all "0" when the \overline{CS} pin is changed from "L" to "H". If data except all "0" is input into the AK9813B under programming cycle, accidental data disturbance may occur.

②Timing Diagram for LD I/F (SEL ="L")1. DAC mode: The internal EEPROM is not used.

2. WRITE ENABLE/DISABLE mode: The programming state of internal EEPROM is set.

	"1111"=WRITE DISABLE
DI	CL WR (D11 D10 D9 D8) D7 (D6) D5) D4 (D3) D2) D1 (D0
	"0000"=WRITE ENABLE
CLK	
CS/LD	

3. CALL mode: The output of the D/A is set by the data in the internal EEPROM.

DI	CL WR (D11 (D10) D9) D8 (D7) D6 (D5) D4 (D3) D2 (D1) D0
CLK	
EA0, EA1	χ
CS/LD	
DO	
AO1 - 12	X

DI	CL WR D11 D10 D9 D8 (D7) D6) D5) D4) D3) D2) D1) D0
CLK	
EA0, EA1	X
CS/LD	
DO	
AO1 - 12	X

4. ALL CALL mode: The outputs of the all D/As are set by the data in the internal EEPROM.

•The D/A outputs are set from AO1 to AO12 in order.

5. WRITE mode: The digital input data for D/A converter is written into the internal EEPROM.

DI	CL / WR (D11 (D10) D9 (D8 (D7) D6 (D5) D4 (D3) D2 (D1) D0
CLK	
EA0, EA1	χ
CS/LD	
DO	

(NOTE)

- * In case that AK9813B devices are connected in cascade, when a AK9813B device is under programming cycle, the AK9813B device under programming cycle can not transfer the data to the other AK9813B device and some AK9813B devices can not be operated by the common CS signal at the same time.
- * While programming cycle, the \overline{CS}/LD pin should be "L".
- * When the Ready/Busy signal from the DO pin is verified, the CS pin should be changed from "H" to "L" and kept at "L". If the CS pin is kept at "H", the Ready/Busy signal does not output correctly.

6. READ mode: The data in the internal EEPROM is read from the DO pin.

DI	CL WR (D11) (D10) (D9) (D8) (D7 ·· D1) (D0) (D4 Data for next mode or all "0"
CLK	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
EA0, EA1	
CS/LD	·
DO	
	INVALID DATA VALID DATA (8bit: MSB first)
AO1 - 12	Not change

7. ECL function:

When the ECL pin received high pulse, the data in EEPROM is automatically loaded to each corresponding D/A, and starting from AO1 to AO12 in order. Then each D/A output is settled to pre-determined value.

EA0, EA1	EEPROM ADDRESS X
ECL	
AO1 - 12	
	* Analog outputs are set from AO1 to AO12 in order.

Absolute Maximum Ratings

Parameter	Symbol	Spec.	Unit
Power Supply	VCC	-0.6 to +7.0	V
Input Voltage	VIO	-0.6 to VCC+0.6	V
Ambient Temperature	Та	-40 to +85	°C
Storage Temperature	Tst	-65 to +150	С°

Recommended Operating Conditions

Parameter	Symbol	Conditions	Min	Тур	Max	Units
Power Supply 1 (Digital section)	VCC		2.7		5.5	V
Power Supply 2	VDD1		4.5		5.5	V
(DAC, AMP sections)	VDD2		2.7		3.6	V
Analog Output Source Current 1	IAL				1	mA
Analog Output Sink Current 1	IAH	VDD=4.5V to 5.5V			1	mA
Analog Output Source Current 2	IAL	VDD=2.7V to 3.6V			500	μA
Analog Output Sink Current 2	IAH	2.7 0 10 5.00			500	μΑ
Analog Output Load Capacitance	AOC				1.0	μF

Electrical Characteristics

DC Characteristics

(1) Digital Section

(VCC=2.7V to 5.5V, VDD=4.5V to 5.5V or 2.7V to 3.6V, GND, VSS=0V, Ta=-40°C to +85°C)

Parameter	Symbol	Pin	Conditions	Min	Max	Units
Power Supply (Digital Section)	VCC			2.7	5.5	V
Operating Current (READ) (1) (2)	ICC	VCC	CLK=1MHz		1.1	mA
Leakage Current	ILI	<u>CL</u> K, DI CS/LD EA0, EA1 ECL, SEL	VIN=VCC	-1.0	1.0	μA
High Level Input Voltage 1	VIH	DI EA0, EA1		0.5xVCC		V
Low Level Input Voltage 1	VIL	ECL, SEL			0.2xVCC	V
High Level Input Voltage 2	VIH	CS/LD CLK		0.6xVCC		V
Low Level Input Voltage 2	VIL				0.15xVCC	V
High Level Output Voltage	VOH1	DO	4.5V≤VCC≤5.5V IOH=-400µA	VCC-0.4		V
Output voltage	VOH2		2.7V≤VCC<4.5V IOH=-200µA	0.7xVCC		V
Low Level Output Voltage	VOL1		4.5V≤VCC≤5.5V IOH=1.0mA		0.4	V
	VOL2		2.7V≤VCC<4.5V IOH=1.0mA		0.4	V

(1) All input pins are connected to either VCC or GND.

(2) DO=OPEN

(2) Analog Section

(2-1) VDD=4.5V to 5.5V

(VCC=2.7V to 5.5V, VDD=4.5V to 5.5V, GND, VSS=0V, Ta=-40°C to +85°C)

Parameter	Symbol	Pin	Conditions	Min	Тур	Max	Units
Power Supply 1 (Analog Section)	VDD1	VDD		4.5	5.0	5.5	V
Power Dissipation 1 (Analog Section)	IDD1		AOx=OPEN			7.0	mA
Resolution	Res				8		bits
Integral (3) Non-Linearity: INL	LE	AO1	AOx=OPEN 0.05V≤AO	-1.5		1.5	LSB
Differential Non-Linearity: DNL	D _{LE}	 AO12	≤VDD-0.1V	-1.0		2.0	LSB
Buffer-AMP Minimum Output Voltage 1	VAOL1		IAL=0µA Data=00(Hex)	GND		0.05	V
Buffer-AMP Minimum Output Voltage 2	VAOL2		IAL=500µA Data=00(Hex)	-0.1		0.1	V
Buffer-AMP Minimum Output Voltage 3	VAOL3		IAH=500µA Data=00(Hex)	GND		0.1	V
Buffer-AMP Minimum Output Voltage 4	VAOL4		IAL=1mA Data=00(Hex)	-0.2		0.2	V
Buffer-AMP Minimum Output Voltage 5	VAOL5	AO1	IAH=1mA Data=00(Hex)	GND		0.2	V
Buffer-AMP Maximum Output Voltage 1	VAOH1	AO12	IAH=0µA Data=FF(Hex)	VDD-0.1		VDD	V
Buffer-AMP Maximum Output Voltage 2	VAOH2		IAL=500µA Data=FF(Hex)	VDD-0.2		VDD	V
Buffer-AMP Maximum Output Voltage 3	VAOH3		IAH=500µA Data=FF(Hex)	VDD-0.2		VDD+0.2	V
Buffer-AMP Maximum Output Voltage 4	VAOH4		IAL=1mA Data=FF(Hex)	VDD-0.3		VDD	V
Buffer-AMP Maximum Output Voltage 5	VAOH5		IAH=1mA Data=FF(Hex)	VDD-0.3		VDD+0.3	V

(3) Integral Non-Linearity is the error between the actual line and the ideal line. The ideal line exhibits a perfect linear D/A converter output characteristic between the input digital data"00" and the input digital data"FF".

(2-2) VDD=2.7V to 3.6V

(VCC=2.7V to 3.6V, VDD=2.7V to 3.6V, GND, VSS=0V, Ta=-40°C to +85°C)

Parameter	Symbol	Pin	Conditions	Min	Тур	Max	Units							
Power Supply 2 (Analog Section)	VDD2	VDD		2.7		3.6	V							
Power Dissipation 2 (Analog Section)	IDD2		AOx=OPEN			4.0	mA							
Resolution	Res				8		bits							
Integral (4) Non-Linearity: INL	LE		AOx=OPEN 0.15V≤AO	-1.5		1.5	LSB							
Differential Non-Linearity: DNL	D _{LE}	AO1	≤VDD-0.15V	-1.0		2.0	LSB							
Output Voltage for Input Data "05"		AO12	AOx=OPEN		0.1	0.15	V							
Output Voltage for Input Data "FA"			VDD=3.3V	3.15	3.25		V							
Buffer-AMP Minimum Output Voltage 6	VAOL6		IAL=0µA Data=00(Hex)	GND		0.05	V							
Buffer-AMP Minimum Output Voltage 7	VAOL7		IAL=250µA Data=00(Hex)	-0.1		0.1	V							
Buffer-AMP Minimum Output Voltage 8	VAOL8		IAH=250µA Data=00(Hex)	GND		0.1	V							
Buffer-AMP Minimum Output Voltage 9	VAOL9									IAL=500µA Data=00(Hex)	-0.2		0.2	V
Buffer-AMP Minimum Output Voltage 10	VAOL10	AO1	IAH=500µA Data=00(Hex)	GND		0.2	V							
Buffer-AMP Maximum Output Voltage 6	VAOH6	AO12	IAH=0µA Data=FF(Hex)	VDD-0.1		VDD	V							
Buffer-AMP Maximum Output Voltage 7	VAOH7		IAL=250µA Data=FF(Hex)	VDD-0.2		VDD	V							
Buffer-AMP Maximum Output Voltage 8	VAOH8		IAH=250µA Data=FF(Hex)	VDD-0.2		VDD+0.2	V							
Buffer-AMP Maximum Output Voltage 9	VAOH9		IAL=500µA Data=FF(Hex)	VDD-0.3		VDD	V							
Buffer-AMP Maximum Output Voltage 10	VAOH10		IAH=500µA Data=FF(Hex)	VDD-0.3		VDD+0.3	V							

(4) Integral Non-Linearity is the error between the actual line and the ideal line. The ideal line exhibits a perfect linear D/A converter output characteristic between the input digital data"05" and the input digital data"FA".

AC Characteristics

(1) CS I/F, LD I/F: Common Timing

()	VCC=2.7V to 5.5V.	VDD=4.5V to 5.5V	' or 2.7V to 3.6V. G	GND. VSS=0V. T	a=-40°C to +85°C)
· · ·			•••••••••••••••••••••••••••••••••••••••		

-					
Parameter	Symbol	Conditions	Min	Max	Units
VCC Rise Time	tVCR			50	ms
Auto Address Hold Time	tVAH		3.5		ms
Auto Read Time	tPOR	Test Load 2		3.5	ms
ECL "H" Pulse Width	tECW1	*1	100		ns
	tECW2	*2	250		ns
External Call Time	tECL	Test Load 2		3.5	ms
Address Set Up Time	tESU1	*1	50		ns
	tESU2	*2	100		ns
ECL Address Hold Time	tEAH		3.5		ms
Repeat Call Prohibition Time	tECC1	*1	20		ns
	tESCC2	*2	100		ns

*1: 4.5V≤VCC≤5.5V

*2: 2.7V ≤ VCC < 4.5V

<AUTO READ>

<ECL FUNCTION>

(2) CS I/F Timing

Parameter	Symbol	Conditions	Min	Max	Units
Clock "L" Pulse Width	tCKL1	*	5 200		ns
	tCKL2	*	5 500		ns
Clock "H" Pulse Width	tCKH1	*	5 200		ns
	tCKH2	*	500		ns
Clock Rising Time	tCr			200	nc
Clock Falling Time	tCf			200	ns
Data Set Up Time	tDSU1	*	5 30		ns
	tDSU2	*			ns
Data Hold Time	tDHD1	*			ns
	tDHD2	*(ns
CS Set Up Time	tCSU1	*;			ns
	tCSU2	*			ns
CS Hold Time	tCCH		200		ns
CS "H" Hold Time	tCSH	DAC etc. *3, *4, *			ns
		*3, *4, *			ns
		WRITE *	-		ms
		CALL, READ	15		μs
		ALL CALL	3.5		ms
Data Output Enable Time	tDOD1	*	-	200	ns
	tDOD2	*		500	ns
Data Output Float Delay	tDOZ1	*	-	200	ns
	tDOZ2	*	-	500	ns
Data Output Delay	tDOC1	Test Load 1 *	-	170	ns
	tDOC2	*	-	300	ns
D/A Output Setting Time	tCSD	DAC Test Load		200	μs
		CALL Test Load 2		250	μs
		ALL CALL Test Load		3.5	ms
Status Set Up Time	tSSU		100		ns
Status Hold Time	tSHD1	*			ns
	tSHD2	*	6 250		ns

*3: Please refer to "DAC etc" regarding \overline{CS} "H" Hold Time before status mode execute.

*4: If READY/BUSY="H" is confirmed in status mode in the WRITE mode, the $\overline{\text{CS}}$ pin can be changed to "L" shorter than the values specified on above. Please refer to "DAC etc" regarding $\overline{\text{CS}}$ "H" Hold Time in case that AK9813B to be

connected in cascade is under programming cycle (READY/BUSY="L").

*5: 4.5V ≤ VCC ≤ 5.5V

*6: 2.7V≤VCC<4.5V

<Input / Output Waveform>

<STATUS Output>

(3) LD I/F Timing

Parameter	Symbol	Conditions	Min	Max	Units
Clock "L" Pulse Width	tCKL1	*5	200		ns
	tCKL2	*6	500		ns
Clock "H" Pulse Width	tCKH1	*5	200		ns
	tCKH2	*6	500		ns
Clock Rising Time	tCr			200	
Clock Falling Time	tCf			200	ns
Data Set Up Time	tDCH1	*5	30		ns
•	tDCH2	*6	150		ns
Data Hold Time	tCHD1	*5	60		ns
	tCHD2	*6	150		ns
Load Set Up Time	tCHL		200		ns
Load Hold Time	tLDC1	*5	100		ns
	tLDC2	*6	250		ns
Load "H" Pulse Width	tLDH1	modes except *5	100		ns
	tLDH2	READ mode *6	250		ns
	tLDH3	READ mode	5		μs
Data Output Delay	tDO1	Test Load 1 *5		170	ns
	tDO2	Test Load 1 *6		300	ns
D/A Output Setting Time	tLDD	DAC Test Load 2		200	μs
		CALL Test Load 2		250	μs
		ALL CALL Test Load 2		3.5	ms
Address Set Up Time	tASU1	*5	100		ns
	tASU2	*6	200		ns
Write Address Hold Time	tWAHD1	*5	20		ns
	tWAHD2	*6	100		ns
Programming Cycle	tWRT	*7		7	ms
Ready Signal Delay	tRYD	Test Load 1		0.8	μs
Repeat Write Prohibition	tRYH1	Test Load 1 *5	20		ns
Time	tRYH2	Test Load 2 *6	100		ns
Read Hold Time	tRHD	CALL, READ mode	15		μs
		ALL CALL mode	3.5		ms
Read Address Hold Time	tRAHD	CALL, READ mode	15		μs
		ALL CALL mode	3.5		ms

*7: If READY/BUSY="L" is confirmed in status mode in the WRITE mode, the next operation can be started.

<Input / Output Waveform>

<Data Timing>

<WRITE mode>

* Please refer to the data timing regarding the input timing for the DI pin.

<CALL mode> <ALL CALL mode> <READ mode>

* Please refer to the data timing regarding the input timing for the DI pin.

Test Load 1

•AC test point

Digital Input / Output Level	:	50% / 20% of VCC
Analog Output Level	:	90% / 10% of VCC

IMPORTANT NOTICE

- These products and their specifications are subject to change without notice. Before considering any use or application, consult the Asahi Kasei Microsystems Co., Ltd. (AKM) sales office or authorized distributor concerning their current status.
- AKM assumes no liability for infringement of any patent, intellectual property, or other right in the application or use of any information contained herein.
- Any export of these products, or devices or systems containing them, may require an export license or other official approval under the law and regulations of the country of export pertaining to customs and tariffs, currency exchange, or strategic materials.
- AKM products are neither intended nor authorized for use as critical components in any safety, life support, or other hazard related device or system, and AKM assumes no responsibility relating to any such use, except with the express written consent of the Representative Director of AKM. As used here:
- (a) A hazard related device or system is one designed or intended for life support or maintenance of safety or for applications in medicine, aerospace, nuclear energy, or other fields, in which its failure to function or perform may reasonably be expected to result in loss of life or in significant injury or damage to person or property.
- (b) A critical component is one whose failure to function or perform may reasonably be expected to result, whether directly or indirectly, in the loss of the safety or effectiveness of the device or system containing it, and which must therefore meet very high standards of performance and reliability.
- It is the responsibility of the buyer or distributor of an AKM product who distributes, disposes of, or otherwise places the product with a third party to notify that party in advance of the above content and conditions, and the buyer or distributor agrees to assume any and all responsibility and liability for and hold AKM harmless from any and all claims arising from the use of said product in the absence of such notification.