
March 2009 Rev 4 1/47

1

SN260

ZigBee® 802.15.4 network processor

Features
■ Integrated 2.4GHz, IEEE 802.15.4-compliant

transceiver:
– Robust RX filtering allows co-existence

with IEEE 802.11g and Bluetooth devices
– –99 dBm RX sensitivity (1% PER, 20-byte

packet)
– +2.5 dBm nominal output power
– Increased radio performance mode (Boost

mode) gives –100 dBm sensitivity and
+4.5 dBm transmit power

– Integrated VCO and loop filter
– Secondary TX-only RF port for applications

requiring external PA.

■ Integrated IEEE 802.15.4 PHY and MAC

■ Dedicated peripherals and integrated memory

■ Ember ZigBee®-compliant stack running on
the dedicated network processor

■ Controlled by the Host using the EmberZNet™
Serial Protocol (EZSP)
– Standard SPI or UART interfaces allow for

connection to a variety of Host
microcontrollers

■ Non-intrusive debug interface (SIF)

■ Integrated hardware and software support for
InSight™ Development Environment

■ Provides integrated RC oscillator for low power
operation

■ Three sleep modes:
– Processor idle (automatic)
– Deep sleep—1.0µA
– Power down—1.0µA

■ Watchdog timer and power-on-reset circuitry

■ Integrated AES encryption accelerator

■ Integrated 1.8V voltage regulator

www.st.com

http://www.st.com

Contents SN260

2/47

Contents

1 Abbreviations and acronyms . 5

2 References . 6

3 General description . 7

4 Pin assignment . 8

5 Top-level functional description . 12

6 Functional description . 14

6.1 Receive (RX) path . 14

6.1.1 RX baseband . 14

6.1.2 RSSI and CCA . 14

6.2 Transmit (TX) path . 15

6.2.1 TX baseband . 15

6.2.2 TX_ACTIVE signal . 15

6.3 Integrated MAC module . 16

6.4 Packet trace interface (PTI) . 16

6.5 16-bit microprocessor . 17

6.6 Embedded memory . 17

6.6.1 Simulated EEPROM . 17

6.6.2 Flash information area (FIA) . 18

6.7 Encryption accelerator . 18

6.8 nRESET signal . 18

6.9 Reset detection . 18

6.10 Power-on-reset (POR) . 19

6.11 Clock sources . 19

6.11.1 High-frequency crystal oscillator . 19

6.11.2 Internal RC oscillator . 20

6.12 Random number generator . 20

6.13 Watchdog timer . 21

6.14 Sleep timer . 21

SN260 Contents

 3/47

6.15 Power management . 21

7 SPI protocol . 22

7.1 Physical interface configuration . 22

7.2 SPI transaction . 22

7.2.1 Command section . 23

7.2.2 Wait section . 23

7.2.3 Response section . 23

7.2.4 Asynchronous signaling . 23

7.2.5 Spacing . 24

7.2.6 Waking the SN260 from sleep . 24

7.2.7 Error conditions . 25

7.3 SPI protocol timing . 26

7.4 Data format . 26

7.5 SPI byte . 27

7.5.1 Primary SPI bytes . 28

7.5.2 Special response bytes . 29

7.6 Powering on, power cycling, and rebooting . 29

7.6.1 Bootloading the SN260 . 29

7.6.2 Unexpected resets . 30

7.7 Transaction examples . 30

7.7.1 SPI protocol version . 30

7.7.2 EmberZNet serial protocol frame — Version command 31

7.7.3 SN260 reset . 32

7.7.4 Three-part transaction: Wake, Get Version, Stack Status Callback 33

8 UART Gateway Protocol . 35

9 SIF module programming and debug interface 37

10 Typical application . 38

11 Package mechanical data . 40

12 Ordering information . 40

13 Electrical characteristics . 41

Contents SN260

4/47

13.1 Absolute maximum ratings . 41

13.2 Recommended operating conditions . 41

13.3 Environmental characteristics . 42

13.4 DC electrical characteristics . 42

13.5 Digital I/O specifications . 43

13.6 RF electrical characteristics . 44

13.6.1 Receive . 44

13.6.2 Transmit . 45

13.6.3 Synthesizer . 45

14 Revision history . 46

SN260 Abbreviations and acronyms

 5/47

1 Abbreviations and acronyms

Table 1. Abbreviations and acronyms

Acronym/abbreviation Meaning

ACR Adjacent Channel Rejection

AES Advanced Encryption Standard

CBC-MAC Cipher Block Chaining—Message Authentication Code

CCA Clear Channel Assessment

CCM Counter with CBC-MAC Mode for AES encryption

CCM* Improved Counter with CBC-MAC Mode for AES encryption

CSMA Carrier Sense Multiple Access

CTR Counter Mode

EEPROM Electrically Erasable Programmable Read Only Memory

ESD Electro Static Discharge

ESR Equivalent Series Resistance

FFD Full Function Device (ZigBee)

FIA Flash Information Area

GPIO General Purpose I/O (pins)

HF High Frequency (24 MHz)

I2C Inter-Integrated Circuit bus

IDE Integrated Development Environment

IF Intermediate Frequency

IP3 Third order Intermodulation Product

ISR Interrupt Service Routine

kB Kilobyte

kbps kilobits/second

LF Low Frequency

LNA Low Noise Amplifier

LQI Link Quality Indicator

MAC Medium Access Control

MSL Moisture Sensitivity Level

Msps Mega samples per second

O-QPSK Offset-Quadrature Phase Shift Keying

PA Power Amplifier

PER Packet Error Rate

PHY Physical Layer

PLL Phase-Locked Loop

POR Power-On-Reset

PSD Power Spectral Density

PSRR Power Supply Rejection Ratio

PTI Packet Trace Interface

References SN260

6/47

2 References

● ZigBee Specification (www.zigbee.org; ZigBee document 053474)

● ZigBee-PRO Stack Profile (www.zigbee.org; ZigBee document 074855)

● ZigBee Stack Profile (www.zigbee.org; ZigBee document 064321)

● Bluetooth Core Specification v2.1
(www.bluetooth.com/Bluetooth/Technology/Building/Specifications/Default.htm)

● IEEE 802.15.4-2003 (standards.ieee.org/getieee802/download/802.15.4-2003.pdf)

● IEEE 802.11g (standards.ieee.org/getieee802/download/802.11g-2003.pdf)

● Ember EM260 Reference Design (ember.com/products_documentation.html)

PWM Pulse Width Modulation

RoHS Restriction of Hazardous Substances

RSSI Receive Signal Strength Indicator

SFD Start Frame Delimiter

SIF Serial Interface

SPI Serial Peripheral Interface

UART Universal Asynchronous Receiver/Transmitter

VCO Voltage Controlled Oscillator

VDD Voltage Supply

Table 1. Abbreviations and acronyms (continued)

Acronym/abbreviation Meaning

SN260 General description

 7/47

3 General description

The SN260 integrates a 2.4GHz, IEEE 802.15.4-compliant transceiver with a 16-bit network
processor (XAP2b core) to run EmberZNet™, the Ember ZigBee-compliant network stack.
The SN260 exposes access to the EmberZNet API across a standard SPI module or a
UART module, allowing application development on a Host platform. This means that the
SN260 can be viewed as a ZigBee peripheral connected over a serial interface. The XAP2b
microprocessor is a power-optimized core integrated in the SN260. It contains integrated
Flash and RAM memory along with an optimized peripheral set to enhance the operation of
the network stack.

The transceiver utilizes an efficient architecture that exceeds the dynamic range
requirements imposed by the IEEE 802.15.4-2003 standard by over 15dB. The integrated
receive channel filtering allows for co-existence with other communication standards in the
2.4GHz spectrum such as IEEE 802.11g and Bluetooth. The integrated regulator, VCO, loop
filter, and power amplifier keep the external component count low. An optional high-
performance radio mode (boost mode) is software selectable to boost dynamic range by a
further 3dB.

The SN260 contains embedded Flash and integrated RAM for program and data storage.
By employing an effective wear-leveling algorithm, the stack optimizes the lifetime of the
embedded Flash, and affords the application the ability to configure stack and application
tokens within the SN260.

To maintain the strict timing requirements imposed by ZigBee and the IEEE 802.15.4-2003
standard, the SN260 integrates a number of MAC functions into the hardware. The MAC
hardware handles automatic ACK transmission and reception, automatic backoff delay, and
clear channel assessment for transmission, as well as automatic filtering of received
packets. In addition, the SN260 allows for true MAC level debugging by integrating the
Packet Trace Interface.

An integrated voltage regulator, power-on-reset circuitry, sleep timer, and low-power sleep
modes are available. The deep sleep and power down modes draw less than 1 µA, allowing
products to achieve long battery life.

Finally, the SN260 utilizes the non-intrusive SIF module for powerful software debugging
and programming of the network processor.

Target applications for the SN260 include:

● Building automation and control

● Home automation and control

● Home entertainment control

● Asset tracking

The SN260 can only be purchased with the EmberZNet stack. This technical datasheet
describes the SN260 features available to customers using it with the EmberZNet stack.

Pin assignment SN260

8/47

4 Pin assignment

Figure 1. SN260 pin assignment for SPI protocol

SN260

SN260 Pin assignment

 9/47

Figure 2. SN260 pin assignment for UART protocol

SN260

Table 2. Pin descriptions

Pin # Signal Direction Description

1 VDD_VCO Power 1.8V VCO supply

2 RF_P I/O Differential (with RF_N) receiver input/transmitter output

3 RF_N I/O Differential (with RF_P) receiver input/transmitter output

4 VDD_RF Power 1.8V RF supply (LNA and PA)

5 RF_TX_ALT_P O Differential (with RF_TX_ALT_N) transmitter output (optional)

6 RF_TX_ALT_N O Differential (with RF_TX_ALT_P) transmitter output (optional)

7 VDD_IF Power 1.8V IF supply (mixers and filters)

8 BIAS_R I Bias setting resistor

9 VDD_PADSA Power Analog pad supply (1.8V)

10 TX_ACTIVE O

Logic-level control for external RX/TX switch

The SN260 baseband controls TX_ACTIVE and drives it high (1.8V)
when in TX mode. (Refer to Table 15 and section TX_ACTIVE
signal.)

11 nRESET I Active low chip reset (internal pull-up)

12 VREG_OUT Power Regulator output (1.8V)

13 VDD_PADS Power Pads supply (2.1 – 3.6V)

14 VDD_CORE Power 1.8V digital core supply

Pin assignment SN260

10/47

15

nSSEL_INT I
SPI Slave Select Interrupt (from Host to SN260)
This signal must be connected to nSSEL (Pin 21)

nCTS I
UART Clear To Send (enables SN260 transmission)

When using the UART interface, this signal should be left
unconnected if not used.

16

N.C. I When using the SPI interface, this signal is left not connected.

nRTS O
UART Request To Send (enables Host transmission)

When using the UART interface, this signal should be left
unconnected if not used.

17
MOSI I SPI Data, Master Out / Slave In (from Host to SN260)

N.C. I When using the UART interface, this signal is left not connected.

18
MISO O SPI Data, Master In / Slave Out (from SN260 to Host)

N.C. I When using the UART interface, this signal is left not connected.

19 VDD_PADS Power Pads supply (2.1 – 3.6V)

20
SCLK I SPI Clock (from Host to SN260)

N.C. I When using the UART interface, this signal is left not connected.

21
nSSEL I SPI Slave Select (from Host to SN260)

N.C. I When using the UART interface, this signal is left not connected.

22 PTI_EN O Frame signal of Packet Trace Interface (PTI)

23 PTI_DATA O Data signal of Packet Trace Interface (PTI)

24 VDD_PADS Power Pads supply (2.1 – 3.6V)

25
N.C. I When using the SPI interface, this signal is left not connected.

TXD O UART Transmitted Data (from SN260 to Host)

26
nHOST_INT O Host Interrupt signal (from SN260 to Host)

RXD I UART Received Data (from Host to SN260)

27 SIF_CLK I Programming and Debug Interface, Clock (internal pull down)

28 SIF_MISO O Programming and Debug Interface, Master In / Slave Out

29 SIF_MOSI I
Programming and Debug Interface, Master Out / Slave In (external
pull-down re-quired to guarantee state in Deep Sleep Mode)

30 nSIF_LOAD I/O
Programming and Debug Interface, load strobe (open collector with
internal pull up)

31 GND Power Ground supply

32 VDD_FLASH Power 1.8V Flash memory supply

33 SDBG O Spare Debug signal

34 LINK_ACTIVITY O Link and Activity signal

35
nWAKE I Wake Interrupt signal (from Host to SN260)

N.C. I When using the UART interface, this signal is left not connected.

36 VDD_CORE Power 1.8V digital core supply

37 VDD_SYNTH_PRE Power 1.8V synthesizer and pre-scalar supply

Table 2. Pin descriptions (continued)

Pin # Signal Direction Description

SN260 Pin assignment

 11/47

38 OSCB I/O
24MHz crystal oscillator or left open for when using an external clock
input on OSCA

39 OSCA I/O 24MHz crystal oscillator or external clock input

40 VDD_24MHZ Power 1.8V high-frequency oscillator supply

41 GND Ground
Ground supply pad in the bottom center of the package forms Pin 41
(see the SN260 Reference Design for PCB considerations)

Table 2. Pin descriptions (continued)

Pin # Signal Direction Description

Top-level functional description SN260

12/47

5 Top-level functional description

Figure 3 shows a detailed block diagram of the SN260.

Figure 3. SN260 block diagram

The radio receiver is a low-IF, super-heterodyne receiver. It utilizes differential signal paths
to minimize noise interference, and its architecture has been chosen to optimize co-
existence with other devices within the 2.4GHz band (namely, IEEE 802.11g and Bluetooth).
After amplification and mixing, the signal is filtered and combined prior to being sampled by
an ADC.

The digital receiver implements a coherent demodulator to generate a chip stream for the
hardware-based MAC. In addition, the digital receiver contains the analog radio calibration
routines and control of the gain within the receiver path.

The radio transmitter utilizes an efficient architecture in which the data stream directly
modulates the VCO. An integrated PA boosts the output power. The calibration of the TX
path as well as the output power is controlled by digital logic. If the SN260 is to be used with
an external PA, the TX_ACTIVE signal should be used to control the timing of the external
switching logic.

The integrated 4.8 GHz VCO and loop filter minimize off-chip circuitry. Only a 24MHz crystal
with its loading capacitors is required to properly establish the PLL reference signal.

The MAC interfaces the data memory to the RX and TX baseband modules. The MAC
provides hardware-based IEEE 802.15.4 packet-level filtering. It supplies an accurate
symbol time base that minimizes the synchronization effort of the software stack and meets
the protocol timing requirements. In addition, it provides timer and synchronization
assistance for the IEEE 802.15.4 CSMA-CA algorithm.

SN260 Top-level functional description

 13/47

The SN260 integrates hardware support for a Packet Trace module, which allows robust
packet-based debug. This element is a critical component of InSight Desktop, the Ember
software IDE, providing advanced network debug capability when coupled with the InSight
Adapter.

The SN260 integrates a 16-bit XAP2b microprocessor developed by Cambridge
Consultants Ltd. This power-efficient, industry-proven core provides the appropriate level of
processing power to meet the needs of the Ember ZigBee-compliant stack, EmberZNet. In
addition, the SIF module provides a non-intrusive programming and debug interface
allowing for real-time application debugging.

The SN260 exposes the Ember Serial API over either a SPI or UART interface, which allows
application development to occur on a Host platform of choice. The SPI interface uses the
four standard SPI signals plus two additional signals, nHOST_INT and nWAKE, which
provide an easy-to-use handshake mechanism between the Host and the SN260. The
UART interface uses the two standard UART signals and also supports either standard
RTS/CTS or XON/XOFF flow control.

The integrated voltage regulator generates a regulated 1.8V reference voltage from an
unregulated supply voltage. This voltage is decoupled and routed externally to supply the
1.8V to the core logic. In addition, an integrated POR module allows for the proper cold start
of the SN260.

The SN260 contains one high-frequency (24 MHz) crystal oscillator and, for low-power
operation, a second low-frequency internal 10 kHz oscillator.

The SN260 contains two power domains. The always-powered High Voltage Supply is used
for powering the GPIO pads and critical chip functions. The rest of the chip is powered by a
regulated Low Voltage Supply which can be disabled during deep sleep to reduce the power
consumption.

Functional description SN260

14/47

6 Functional description

The SN260 connects to the Host platform through either a standard SPI interface or a
standard UART interface. The EmberZNet Serial Protocol (EZSP) has been defined to allow
an application to be written on a host platform of choice. Therefore, the SN260 comes with a
license to EmberZNet, the Ember ZigBee-compliant software stack. The following brief
description of the hardware modules provides the necessary background on the operation
of the SN260. For more information, contact your local ST sales representative.

6.1 Receive (RX) path
The SN260 RX path spans the analog and digital domains. The RX architecture is based on
a low-IF, super-heterodyne receiver. It utilizes differential signal paths to minimize noise
interference. The input RF signal is mixed down to the IF frequency of 4MHz by I and Q
mixers. The output of the mixers is filtered and combined prior to being sampled by a
12Msps ADC. The RX filtering within the RX path has been designed to optimize the co-
existence of the SN260 with other 2.4GHz transceivers, such as the IEEE 802.11g and
Bluetooth.

6.1.1 RX baseband

The SN260 RX baseband (within the digital domain) implements a coherent demodulator for
optimal performance. The baseband demodulates the O-QPSK signal at the chip level and
synchronizes with the IEEE 802.15.4-2003 preamble. An automatic gain control (AGC)
module adjusts the analog IF gain continuously (every ¼ symbol) until the preamble is
detected. Once the packet preamble is detected, the IF gain is fixed during the packet
reception. The baseband de-spreads the demodulated data into 4-bit symbols. These
symbols are buffered and passed to the hardware-based MAC module for filtering.

In addition, the RX baseband provides the calibration and control interface to the analog RX
modules, including the LNA, RX Baseband Filter, and modulation modules. The EmberZNet
software includes calibration algorithms which use this interface to reduce the effects of
process and temperature variation.

6.1.2 RSSI and CCA

The SN260 calculates the RSSI over an 8-symbol period as well as at the end of a received
packet. It utilizes the RX gain settings and the output level of the ADC within its algorithm.
The linear range of RSSI is specified to be 40dB over all temperatures. At room
temperature, the linear range is approximately 60dB (-90 dBm to -30dBm).

The SN260 RX baseband provides support for the IEEE 802.15.4-2003 required CCA
methods summarized in Table 3. Modes 1, 2, and 3 are defined by the 802.15.4-2003
standard; Mode 0 is a proprietary mode.

SN260 Functional description

 15/47

The EmberZNet Software Stack sets the CCA Mode, and it is not configurable by the
Application Layer. For software versions beginning with EmberZNet 2.5.4, CCA Mode 1 is
used, and a busy channel is reported if the RSSI exceeds its threshold. For software
versions prior to 2.5.4, the CCA Mode was set to 0.

At RX input powers higher than –25 dBm, there is some compression in the receive chain
where the gain is not properly adjusted. In the worst case, this has resulted in packet loss of
up to 0.1%. This packet loss can be seen in range testing measurements when nodes are
closely positioned and transmitting at high power or when receiving from test equipment.
There is no damage to the SN260 from this problem. This issue will rarely occur in the field
as ZigBee Nodes will be spaced far enough apart. If nodes are close enough for it to occur
in the field, the MAC and networking software treat the packet as not having been received
and therefore the MAC level and network level retries resolve the problem without needing
to notify the upper level application.

6.2 Transmit (TX) path
The SN260 transmitter utilizes both analog circuitry and digital logic to produce the O-QPSK
modulated signal. The area-efficient TX architecture directly modulates the spread symbols
prior to transmission. The differential signal paths increase noise immunity and provide a
common interface for the external balun.

6.2.1 TX baseband

The SN260 TX baseband (within the digital domain) performs the spreading of the 4-bit
symbol into its IEEE 802.15.4-2003-defined 32-chip I and Q sequence. In addition, it
provides the interface for software to perform the calibration of the TX module in order to
reduce process, temperature, and voltage variations.

6.2.2 TX_ACTIVE signal

Even though the SN260 provides an output power suitable for most ZigBee applications,
some applications will require an external power amplifier (PA). Due to the timing
requirements of IEEE 802.15.4-2003, the SN250 provides a signal, TX_ACTIVE, to be used
for external PA power management and RF Switching logic. When in TX, the TX Baseband
drives TX_ACTIVE high (as described inTable 15). When in RX, the TX_ACTIVE signal is
low. If an external PA is not required, then the TX_ACTIVE signal should be connected to
GND through a 100k Ohm resistor, as shown in the application circuit in Figure 14.

The TX_ACTIVE signal can only source 1mA of current, and it is based upon the 1.8V signal
swing. If the PA Control logic requires greater current or voltage potential, then TX_ACTIVE
should be buffered externally to the SN260.

Table 3. CCA mode behavior

CCA mode Mode behavior

0
Clear channel reports busy medium if either carrier sense OR RSSI exceeds their
thresholds.

1 Clear channel reports busy medium if RSSI exceeds its threshold.

2 Clear channel reports busy medium if carrier sense exceeds its threshold.

3
Clear channel reports busy medium if both RSSI and carrier sense exceed their
thresholds.

Functional description SN260

16/47

6.3 Integrated MAC module
The SN260 integrates critical portions of the IEEE 802.15.4-2003 MAC requirements in
hardware. This allows the SN260 to provide greater bandwidth to application and network
operations. In addition, the hardware acts as a first-line filter for non-intended packets. The
SN260 MAC utilizes a DMA interface to RAM memory to further reduce the overall
microcontroller interaction when transmitting or receiving packets.

When a packet is ready for transmission, the software configures the TX MAC DMA by
indicating the packet buffer RAM location. The MAC waits for the backoff period, then
transitions the baseband to TX mode and performs channel assessment. When the channel
is clear, the MAC reads data from the RAM buffer, calculates the CRC, and provides 4-bit
symbols to the baseband. When the final byte has been read and sent to the baseband, the
CRC remainder is read and transmitted.

The MAC resides in RX mode most of the time, and different format and address filters keep
non-intended packets from using excessive RAM buffers, as well as preventing the SN260
CPU from being interrupted. When the reception of a packet begins, the MAC reads 4-bit
symbols from the baseband and calculates the CRC. It assembles the received data for
storage in a RAM buffer. A RX MAC DMA provides direct access to the RAM memory. Once
the packet has been received, additional data is appended to the end of the packet in the
RAM buffer space. The appended data provides statistical information on the packet for the
software stack.

The primary features of the MAC are:

● CRC generation, appending, and checking

● Hardware timers and interrupts to achieve the MAC symbol timing

● Automatic preamble, and SFD pre-pended to a TX packet

● Address recognition and packet filtering on received packets

● Automatic acknowledgement transmission

● Automatic transmission of packets from memory

● Automatic transmission after backoff time if channel is clear (CCA)

● Automatic acknowledgement checking

● Time stamping of received and transmitted messages

● Attaching packet information to received packets (LQI, RSSI, gain, time stamp, and
packet status)

● IEEE 802.15.4-2003 timing and slotted/unslotted timing

6.4 Packet trace interface (PTI)
The SN260 integrates a true PHY-level PTI for effective network-level debugging. This two-
signal interface monitors all the PHY TX and RX packets (in a non-intrusive manner)
between the MAC and baseband modules. It is an asynchronous 500 kbps interface and
cannot be used to inject packets into the PHY/MAC interface. The two signals from the
SN260 are the frame signal (PTI_EN) and the data signal (PTI_DATA). The PTI is supported
by InSight Desktop.

SN260 Functional description

 17/47

6.5 16-bit microprocessor
The SN260 integrates the XAP2b microprocessor developed by Cambridge Consultants
Ltd., making it a true network processor solution. The XAP2b is a 16-bit Harvard
architecture processor with separate program and data address spaces. The word width is
16 bits for both the program and data sides.

The standard XAP2 microprocessor and accompanying software tools have been enhanced
to create the XAP2b microprocessor used in the SN260. The XAP2b adds data-side byte
addressing support to the XAP2 allowing for more productive usage of RAM and optimized
code.

The XAP2b clock speed is 12MHz. When used with the EmberZNet stack, firmware may be
loaded into Flash memory using the SIF mechanism (described in Section 9: SIF module
programming and debug interface) or over the air or by a serial link using a built-in
bootloader1 in a reserved area of the Flash. Alternatively, firmware may be loaded via the
SIF interface with the assistance of RAM-based utility routines also loaded via SIF.

6.6 Embedded memory
The SN260 contains embedded Flash and RAM memory for firmware storage and
execution. In addition it partitions a portion of the Flash for simulated EEPROM and token
storage.

6.6.1 Simulated EEPROM

The protocol stack reserves a section of Flash memory to provide simulated EEPROM
storage area for stack and customer tokens. The Flash cell has been qualified for a data
retention time of >100 years at room temperature and is rated to have a guaranteed 1,000
write/erase cycles. Because the Flash cells are qualified for up to 1,000 write cycles, the
simulated EEPROM implements an effective wear-leveling algorithm which effectively
extends the number of write cycles for individual tokens.

The number of set-token operations is finite due to the write cycle limitation of the Flash. It is
not possible to guarantee an exact number of set-token operations because the life of the
simulated EEPROM depends on which tokens are written and how often.

The SN260 stores non-volatile information necessary for network operation as well as 8
tokens available to the Host. The majority of internal tokens are only written when the
SN260 performs a network join or leave operation. As a simple estimate of possible set-
token operations, consider an SN260 in a stable network (no joins or leaves) not sending
any messages where the Host uses only one of the 8-byte tokens available to it. Under this
scenario, a very rough estimate results in approximately 330,000 possible set-token
operations. The number of possible set-token calls, though, depends on which tokens are
being set, so the ratios of set-token calls for each token plays a large factor. A very rough
estimate for the total number of times an App token can be set is approximately 320,000.

These estimates would typically increase if the SN260 is kept closer to room temperature,
since the 1,000 guaranteed write cycles of the Flash is for across temperature.

Functional description SN260

18/47

6.6.2 Flash information area (FIA)

The SN260 also includes a separate 1024-byte FIA that can be used for storage of data
during manufacturing, including serial numbers and calibration values. Programming of this
special Flash page can only be enabled using the SIF interface to prevent accidental
corruption or erasure. The EmberZNet stack reserves a small portion of this space for its
own use and in addition makes eight manufacturing tokens available to the application.

6.7 Encryption accelerator
The SN260 contains a hardware AES encryption engine that is attached to the CPU using a
memory-mapped interface. The CBC-MAC and CTR modes are implemented in hardware,
and CCM* is implemented in software. The first two modes are described in the IEEE
802.15.4-2003 specification. CCM* is described in the ZigBee Specification (ZigBee
Document 053474). The EmberZNet stack implements a security API for applications that
require security at the application level.

6.8 nRESET signal
When the asynchronous external reset signal, nRESET (Pin 13), is driven low for a time
greater than 200ns, the SN260 resets to its default state. An integrated glitch filter prevents
noise from causing an inadvertent reset to occur. If the SN260 is to be placed in a noisy
environment, an external LC Filter or supervisory reset circuit is recommended to guarantee
the integrity of the reset signal.

When nRESET asserts, all SN260 registers return to their reset state. In addition, the
SN260 consumes 1.5mA (typical) of current when held in RESET.

6.9 Reset detection
The SN260 contains multiple reset sources. The reset event is logged into the reset source
register, which lets the CPU determine the cause of the last reset. The following reset
causes are detected:

● Power-on-reset

● Watchdog

● PC rollover

● Software reset

● Core power dip

SN260 Functional description

 19/47

6.10 Power-on-reset (POR)
Each voltage domain (1.8V digital core supply VDD_CORE and pads supply VDD_PADS)
has a power-on-reset (POR) cell.

The VDD_PADS POR cell holds the always-powered high-voltage domain in reset until the
following conditions have been met:

● The high-voltage pads supply VDD_PADS voltage rises above a threshold.

● The internal RC clock starts and generates three clock pulses.

● The 1.8V POR cell holds the main digital core in reset until the regulator output voltage
rises above a threshold.

Additionally, the digital domain counts 1,024 clock edges on the 24MHz crystal before
releasing the reset to the main digital core.

Table 4 lists the features of the SN260 POR circuitry.

6.11 Clock sources
The SN260 integrates two oscillators: a high-frequency 24-MHz crystal oscillator and a low-
frequency internal 10-kHz RC oscillator.

6.11.1 High-frequency crystal oscillator

The integrated high-frequency crystal oscillator requires an external 24MHz crystal with an
accuracy of ±40ppm. Based upon the application bill of materials and current consumption
requirements, the external crystal can cover a range of ESR requirements. For a lower ESR,
the cost of the crystal increases but the overall current consumption decreases. Likewise, for
higher ESR, the cost decreases but the current consumption increases. Therefore, the
designer can choose a crystal to fit the needs of the application.

Table 5 lists the specifications for the high-frequency crystal.

Table 4. POR specifications

Parameter Min. Typ. Max. Unit

VDD_PADS POR release 1.00 1.20 1.40 V

VDD_PADS POR assert 0.50 0.60 0.70 V

1.8V POR release 1.35 1.50 1.65 V

1.8V POR hysteresis 0.08 0.10 0.12 V

Table 5. High-frequency crystal specifications

Parameter Test conditions Min. Typ. Max. Unit

Frequency 24 MHz

Duty cycle 40 60 %

Phase noise from 1 kHz to
100 kHz

- 120 dBc/Hz

Accuracy Initial, temperature, and aging - 40 + 40 ppm

Functional description SN260

20/47

6.11.2 Internal RC oscillator

The SN260 has a low-power, low-frequency RC oscillator that runs all the time. Its nominal
frequency is 10 kHz.

The RC oscillator has a coarse analog trim control, which is first adjusted to get the
frequency as close to 10 kHz as possible. This raw clock is used by the chip management
block. It is also divided down to 1kHz using a variable divider to allow software to accurately
calibrate it. This calibrated clock is used by the sleep timer.

Timekeeping accuracy depends on temperature fluctuations the chip is exposed to, power
supply impedance, and the calibration interval, but in general it will be better than 150 ppm
(including crystal error of 40 ppm).

Table 6 lists the specifications of the RC oscillator.

6.12 Random number generator
The SN260 allows for the generation of random numbers by exposing a randomly generated
bit from the RX ADC. Analog noise current is passed through the RX path, sampled by the
receive ADC, and stored in a register. The value contained in this register could be used to
seed a software-generated random number. The EmberZNet stack utilizes these random
numbers to seed the random MAC backoff and encryption key generators.

Crystal ESR Load capacitance of 10pF 100 Ω

Crystal ESR Load capacitance of 18pF 60 Ω

Start-up time to stable
clock (max. bias)

1 ms

Start-up time to stable
clock (optimum bias)

2 ms

Current consumption Good crystal: 20Ω ESR, 10pF load 0.2 0.3 mA

Current consumption
Worst-case crystals (60Ω, 18pF or
100Ω, 10pF)

0.5 mA

Current consumption At maximum bias 1 mA

Table 5. High-frequency crystal specifications (continued)

Parameter Test conditions Min. Typ. Max. Unit

Table 6. RC oscillator specifications

Parameter Test conditions Min. Typ. Max. Unit

Frequency 10 kHz

Analog trim steps 1 kHz

Frequency variation with supply
For a voltage drop from 3.6V
to 3.1V or 2.6V to 2.1V

0.75 1.5 %

SN260 Functional description

 21/47

6.13 Watchdog timer
The SN260 contains an internal watchdog timer clocked from the internal oscillator. If the
timer reaches its time-out value of approximately 2 seconds, it will reset the SN260. This
reset signal cannot be routed externally to the Host.

The SN260 firmware will periodically restart the watchdog timer while the firmware is
running normally. The Host cannot effect or configure the watchdog timer.

6.14 Sleep timer
The 16-bit sleep timer is contained in the always-powered digital block. The clock source for
the sleep timer is a calibrated 1kHz clock. The frequency is slowed down with a 2N prescaler
to generate a final timer resolution of 1ms. With a 1ms tick and a 16-bit timer, the timer
wraps about every 65.5 seconds. The EmberZNet stack appropriately handles timer wraps
allowing the Host to order a theoretical maximum sleep delay of 4 million seconds.

6.15 Power management
The SN260 supports four different power modes: active, idle, deep sleep, and power down.

Active mode is the normal, operating state of the SN260.

While in idle mode, code execution halts until any interrupt occurs. All modules of the SN260
including the radio continue to operate normally. The EmberZNet stack automatically
invokes idle as appropriate.

Deep sleep mode and power down mode both power off most of the SN260, including the
radio, and leave only the critical chip functions powered. The internal regulator is disabled
and VREG_OUT is turned off. All output signals are maintained in a frozen state. Upon
waking from deep sleep or power down mode, the internal regulator is re-enabled. Deep
sleep and power down result in the same sleep current consumption. The two sleep modes
differ as follows: the SN260 can wake on both an internal timer and an external signal from
deep sleep mode; power down mode can only wake on an external signal.

SPI protocol SN260

22/47

7 SPI protocol

The SN260 low level protocol centers on the SPI interface for communication with a pair of
GPIO for handshake signaling.

● The SN260 looks like a hardware peripheral.

● The SN260 is the slave device and all transactions are initiated by the Host (the
master).

● The SN260 supports a reasonably high data rate.

7.1 Physical interface configuration
The SN260 supports both SPI Slave Mode 0 (clock is idle low, sample on rising edge) and
SPI Slave Mode 3 (clock is idle high, sample on rising edge) at a maximum SPI clock rate of
5MHz, as illustrated in Figure 4.

Note: The convention for the waveforms in this document is to show Mode 0.

Figure 4. SPI transfer format, Mode 0 and Mode 3

The nHOST_INT signal and the nWAKE signal are both active low. The Host must supply a
pull-up resistor on the nHOST_INT signal to prevent errant interruptions during undefined
events such as the SN260 resetting. The SN260 supplies an internal pull-up on the nWAKE
signal to prevent errant interruptions during undefined events such as the Host resetting.

7.2 SPI transaction
The basic SN260 SPI transaction is half-duplex to ensure proper framing and to give the
SN260 adequate response time. The basic transaction, as shown in Figure 5, is composed
of three sections: Command, Wait, and Response. The transaction can be considered
analogous to a function call. The Command section is the function call, and the Response
section is the return value.

Figure 5. General timing diagram for a SPI transaction

SN260 SPI protocol

 23/47

7.2.1 Command section

The Host begins the transaction by asserting the Slave Select and then sending a command
to the SN260. This command can be of any length from 2 to 136 bytes and must not begin
with 0xFF. During the Command section, the SN260 will respond with only 0xFF. The Host
should ignore data on MISO during the Command section. Once the Host has completed
transmission of the entire message, the transaction moves to the Wait section.

7.2.2 Wait section

The Wait section is a period of time during which the SN260 may be processing the
command or performing other operations. Note that this section can be any length of time up
to 200 milliseconds. Because of the variable size of the Wait section, an interrupt-driven or
polling-driven method is suggested for clocking the SPI as opposed to a DMA method.
Since the SN260 can require up to 200 milliseconds to respond, as long as the Host keeps
Slave Select active, the Host can perform other tasks while waiting for a Response.

To determine when a Response is ready, use one of two methods:

● Clock the SPI until the SN260 transmits a byte other than 0xFF.

● Interrupt on the falling edge of nHOST_INT.

The first method, clocking the SPI, is recommended due to simplicity in implementing.
During the Wait section, the SN260 will transmit only 0xFF and will ignore all incoming data
until the Response is ready. When the SN260 transmits a byte other than 0xFF, the
transaction has officially moved into the Response section. Therefore, the Host can poll for a
Response by continuing to clock the SPI by transmitting 0xFF and waiting for the SN260 to
transmit a byte other than 0xFF. The SN260 will also indicate that a Response is ready by
asserting the nHOST_INT signal. The falling edge of nHOST_INT is the indication that a
Response is ready. Once the nHOST_INT signal asserts, nHOST_INT will return to idle
after the Host begins to clock data.

7.2.3 Response section

When the SN260 transmits a byte other than 0xFF, the transaction has officially moved into
the Response section. The data format is the same format used in the Command section.
The response can be of any length from 2 to 136 bytes and will not begin with 0xFF.
Depending on the actual response, the length of the response is known from the first or
second byte and this length should be used by the Host to clock out exactly the correct
number of bytes. Once all bytes have been clocked, it is allowable for the Host to de-assert
chip select. Since the Host is in control of clocking the SPI, there are no ACKs or similar
signals needed back from the Host because the SN260 will assume the Host could accept
the bytes being clocked on the SPI. After every transaction, the Host must hold the Slave
Select high for a minimum of 1ms. This timing requirement is called the inter-command
spacing and is necessary to allow the SN260 to process a command and become ready to
accept a new command.

7.2.4 Asynchronous signaling

When the SN260 has data to send to the Host, it will assert the nHOST_INT signal. The
nHOST_INT signal is designed to be an edge-triggered signal as opposed to a level-
triggered signal; therefore, the falling edge of nHOST_INT is the true indicator of data
availability. The Host then has the responsibility to initiate a transaction to ask the SN260 for
its output. The Host should initiate this transaction as soon as possible to prevent possible

SPI protocol SN260

24/47

backup of data in the SN260. The SN260 will de-assert the nHOST_INT signal after
receiving a byte on the SPI. Due to inherent latency in the SN260, the timing of when the
nHOST_INT signal returns to idle can vary between transactions. nHOST_INT will always
return to idle for a minimum of 10µs before asserting again. If the SN260 has more output
available after the transaction has completed, the nHOST_INT signal will assert again after
Slave Select is de-asserted and the Host must make another request.

7.2.5 Spacing

To ensure that the SN260 is always able to deal with incoming commands, a minimum inter-
command spacing is defined at 1ms. After every transaction, the Host must hold the Slave
Select high for a minimum of 1ms. The Host must respect the inter-command spacing
requirement, or the SN260 will not have time to operate on the command; additional
commands could result in error conditions or undesired behavior. If the nHOST_INT signal
is not already asserted, the Host is allowed to use the Wake handshake instead of the inter-
command spacing to determine if the SN260 is ready to accept a command.

7.2.6 Waking the SN260 from sleep

Waking up the SN260 involves a simple handshaking routine as illustrated in Figure 6. This
handshaking ensures that the Host will wait until the SN260 is fully awake and ready to
accept commands from the Host. If the SN260 is already awake when the handshake is
performed (such as when the Host resets and the SN260 is already operating), the
handshake will proceed as described below with no ill effects.

Note: A wake handshake cannot be performed if nHOST_INT is already asserted.

Figure 6. SN260 wake sequence

Waking the SN260 involves the following steps:

1. Host asserts nWAKE.

2. SN260 interrupts on nWAKE and exits sleep.

3. SN260 performs all operations it needs to and will not respond until it is ready to accept
commands.

4. SN260 asserts nHOST_INT within 10ms of nWAKE asserting. If the SN260 does not
assert nHOST_INT within 10ms of nWAKE, it is valid for the Host to consider the
SN260 unresponsive and to reset the SN260.

5. Host detects nHOST_INT assertion. Since the assertion of nHOST_INT indicates the
SN260 can accept SPI transactions, the Host does not need to hold Slave Select high
for the normally required minimum 1ms of inter-command spacing.

6. Host de-asserts nWAKE after detecting nHOST_INT assertion.

7. SN260 will de-assert nHOST_INT within 25 µs of nWAKE de-asserting.

8. After 25µs, any change on nHOST_INT will be an indication of a normal asynchronous
(callback) event.

SN260 SPI protocol

 25/47

7.2.7 Error conditions

If two or more different error conditions occur back to back, only the first error condition will
be reported to the Host (if it is possible to report the error). The following are error conditions
that might occur with the SN260.

● Unsupported SPI command

If the SPI Byte of the command is unsupported, the SN260 will drop the incoming
command and respond with the Unsupported SPI Command Error Response. This
error means the SPI Byte is unsupported by the current Mode the SN260 is in.
Bootloader Frames can only be used with the bootloader and EZSP Frames can only
be used with the EZSP.

● Oversized Payload frame

If the transaction includes a Payload Frame, the Length Byte cannot be a value greater
than 133. If the SN260 detects a length byte greater than 133, it will drop the incoming
Command and abort the entire transaction. The SN260 will then assert nHOST_INT
after Slave Select returns to Idle to inform the Host through an error code in the
Response section what has happened. Not only is the Command in the problematic
transaction dropped by the SN260, but the next Command is also dropped, because it
is responded to with the Oversized Payload Frame Error Response.

● Aborted transaction

An aborted transaction is any transaction where Slave Select returns to Idle
prematurely and the SPI Protocol dropped the transaction. The most common reason
for Slave Select returning to Idle prematurely is the Host unexpectedly resetting. If a
transaction is aborted, the SN260 will assert nHOST_INT to inform the Host through an
error code in the Response section what has happened. When a transaction is
aborted, not only does the Command in the problematic transaction get dropped by the
SN260, but the next Command also gets dropped since it is responded to with the
Aborted Transaction Error Response.

● Missing frame terminator

Every Command and Response must be terminated with the Frame Terminator byte.
The SN260 will drop any Command that is missing the Frame Terminator. The SN260
will then immediately provide the Missing Frame Terminator Error Response.

● Long transaction

A Long Transaction error occurs when the Host clocks too many bytes. As long as the
inter-command spacing requirement is met, this error condition should not cause a
problem, since the SN260 will send only 0xFF outside of the Response section as well
as ignore incoming bytes outside of the Command section.

● Unresponsive

Unresponsive can mean the SN260 is not powered, not fully booted yet, incorrectly
connected to the Host, or busy performing other tasks. The Host must wait the
maximum length of the Wait section before it can consider the SN260 unresponsive to
the Command section. This maximum length is 200 milliseconds, measured from the
end of the last byte sent in the Command Section. If the SN260 ever fails to respond
during the Wait section, it is valid for the Host to consider the SN260 unresponsive and
to reset the SN260. Additionally, if nHOST_INT does not assert within 10ms of nWAKE
asserting during the wake handshake, the Host can consider the SN260 unresponsive
and reset the SN260.

SPI protocol SN260

26/47

7.3 SPI protocol timing
Figure 7 illustrates all critical timing parameters in the SPI Protocol. These timing
parameters are a result of the SN260’s internal operation and both constrain Host behavior
and characterize SN260 operation. The parameters shown are discussed elsewhere in this
document. Note that Figure 7 is not drawn to scale, but is provided to illustrate where the
parameters are measured.

Figure 7. SPI protocol timing waveform

Table 7 lists the timing parameters of the SPI protocol. These parameters are illustrated in
Figure 7.

7.4 Data format
The data format, also referred to as a command, is the same for both the Command section
and the Response section. The data format of the SPI Protocol is straightforward, as
illustrated in Figure 8.

Table 7. SPI protocol timing parameters

Parameter Description Min. Typ. Max. Unit

t1 (a) Wake handshake, while 260 is awake 133 150 µs

t1 (b) Wake handshake, while 260 is asleep 7.3 10 ms

t2 Wake handshake finish 1.1 1.2 25 µs

t3 Reset pulse width 8 µs

t4 (a) Startup time, entering application 250 1500 ms

t4 (b) Startup time, entering bootloader 2.5 7.5 s

t5 nHOST_INT de-asserting after command 13 35 75 µs

t6 Clock rate 200 ns

t7 Wait section 25 755 200000 µs

t8 nHOST_INT de-asserting after response 20 130 800 µs

t9 nHOST_INT asserting after transaction 25 70 800 µs

t10 Inter-command spacing 1 ms

SN260 SPI protocol

 27/47

Figure 8. SPI protocol data format

The total length of a command must not exceed 136 bytes.

All commands must begin with the SPI Byte. Some commands are only two bytes—that is,
they contain the SPI Byte and Frame Terminator only.

The Length Byte is only included if there is information in the Payload Frame and the Length
Byte defines the length of just the Payload Frame. Therefore, if a command includes a
Payload Frame, the Length Byte can have a value from 2 through 133 and the overall
command size will be 5 through 136 bytes. The SPI Byte can be a specific value indicating if
there is a Payload Frame or not, and if there is a Payload Frame, then the Length Byte can
be expected.

The Error Byte is used by the error responses to provide additional information about the
error and appears in place of the length byte. This additional information is described in the
following sections.

The Payload Frame contains the data needed for operating EmberZNet. The EZSP Frame
and its format are explained in the EZSP Reference Guide (120-3009-000). The Payload
Frame may also contain the data needed for operating the bootloader, which is called a
Bootloader Frame. Refer to the EmberZNet Application Developer’s Guide (120-4028-000)
for more information on the bootloader.

The Frame Terminator is a special control byte used to mark the end of a command. The
Frame Terminator byte is defined as 0xA7 and is appended to all Commands and
Responses immediately after the final data byte. The purpose of the Frame Terminator is to
provide a known byte the SPI Protocol can use to detect a corrupt command. For example, if
the SN260 resets during the Response Section, the Host will still clock out the correct
number of bytes. But when the host attempts to verify the value 0xA7 at the end of the
Response, it will see either the value 0x00 or 0xFF and know that the SN260 just reset and
the corrupt Response should be discarded.

Note: The Length Byte only specifies the length of the Payload Frame. It does not include the
Frame Terminator.

7.5 SPI byte
Table 8 lists the possible commands and their responses in the SPI Byte.

Table 8. SPI commands & responses

Command
value

Command
Response

value
Response

Any Any 0x00
SN260 reset occurred—This is never used in another
response; it always indicates an SN260 Reset.

Any Any 0x01
Oversized Payload Frame received—This is never used in
another response; it always indicates an overflow occurred.

Any Any 0x02
Aborted Transaction occurred—This is never used in
another response; it always indicates an aborted transaction
occurred.

SPI protocol SN260

28/47

7.5.1 Primary SPI bytes

There are four primary SPI bytes: SPI protocol version, SPI status, Bootloader frame and
EZSP frame.

● SPI protocol version [0x0A]: Sending this command requests the SPI Protocol
Version number from the SPI Interface. The response will always have bit 7 set and bit
6 cleared. In this current version, the response will be 0x82, since the version number
corresponding to this set of Command-Response values is version number 2. The
version number can be a value from 1 to 63 (0x81–0xBF).

● SPI status [0x0B]: Sending this command asks for the SN260 status. The response
status byte will always have the upper 2 bits set. In this current version, the status byte
only has one status bit [0], which is set if the SN260 is alive and ready for commands.

● Bootloader frame [0xFD]: This byte indicates that the current transaction is a
Bootloader transaction and there is more data to follow. This SPI Byte will cause the
transaction to look like the full data format illustrated in Figure 8. The byte immediately
after this SPI Byte will be a Length Byte, and it is used to identify the length of the
Bootloader Frame. Refer to the EmberZNet Application Developer’s Guide (120-4028-
000) for more information on the bootloader. If the SPI Byte is 0xFD, it means the
minimum transaction size is four bytes.

● EZSP frame [0xFE]: This byte indicates that the current transaction is an EZSP
transaction and there is more data to follow. This SPI Byte will cause the transaction to
look like the full data format illustrated in Figure 8. The byte immediately after this SPI
Byte will be a Length Byte, and it is used to identify the length of the EZSP Frame. (The
EZSP Frame is defined in the EZSP Reference Guide, 120-3009-000.) If the SPI Byte
is 0xFE, it means the minimum transaction size is five bytes

Any Any 0x03
Missing Frame Terminator—This is never used in another
response; it always indicates a missing frame terminator in
the command.

Any Any 0x04
Unsupported SPI Command—This is never used in another
Response; it always indicates an unsupported SPI Byte in
the command.

0x00 –
0x0F

Reserved [none] [none]

0x0A
SPI

Protocol
Version

0x81 –
0xBF

bit[7] is always set. bit[6] is always cleared. bit[5:0] is a
number from 1–63.

0x0B SPI Status
0xC0 –
0xC1

bit[7] is always set. bit[6] is always set. bit[0]—Set if Alive.

0xF0 –
0xFC

Reserved [none] [none]

0xFD
Bootloader

Frame
0xFD Bootloader frame

0xFE
EZSP
Frame

0xFE EZSP frame

0xFF Invalid 0xFF Invalid

Table 8. SPI commands & responses (continued)

Command
value

Command
Response

value
Response

SN260 SPI protocol

 29/47

7.5.2 Special response bytes

There are only five SPI Byte values, 0x00-0x04, ever used as error codes (see Table 9).
When the error condition occurs, any command sent to the SN260 will be ignored and
responded to with one of these codes. These special SPI Bytes must be trapped and dealt
with. In addition, for each error condition the Error Byte (instead of the Length Byte) is also
sent with the SPI Byte.

7.6 Powering on, power cycling, and rebooting
When the Host powers on (or reboots), it cannot guarantee that the SN260 is awake and
ready to receive commands. Therefore, the Host should always perform the Wake SN260
handshake to guarantee that the SN260 is awake. If the SN260 resets, it needs to inform the
Host so that the Host can reconfigure the stack if needed.

When the SN260 resets, it will assert the nHOST_INT signal, telling the Host that it has
data. The Host should request data from the SN260 as usual. The SN260 will ignore
whatever command is sent to it and respond only with two bytes. The first byte will always be
0x00 and the second byte will be the reset type as defined by EmberResetType. This
specialty SPI Byte is never used in another Response SPI Byte. If the Host sees 0x00 from
the SN260, it knows that the SN260 has been reset. The SN260 will de-assert the
nHOST_INT signal shortly after receiving a byte on the SPI and process all further
commands in the usual manner. In addition to the Host having control of the reset line of the
SN260, the EmberZNet Serial Protocol also provides a mechanism for a software reboot.

7.6.1 Bootloading the SN260

The SPI Protocol supports a Payload Frame called the Bootloader Frame for communicating
with the SN260 when the SN260 is in bootloader mode. The SN260 can enter bootload
mode through either an EZSP command or holding one of two pins low while the SN260
exits reset. Both the nWAKE pin and the PTI_DATA pin are capable of activating the
bootloader while performing a standard SN260 reset procedure. Assert nRESET to hold the

Table 9. Byte values used as error codes

SPI byte
value

Error message Error description Error byte description

0x00 SN260 Reset
See Section 7.6: Powering on, power cycling,
and rebooting.

The reset type. Refer to the API
documentation discussing
EmberResetType.

0x01
Oversized EZSP
Frame

The command contained an EZSP frame with
a Length Byte greater than 133. The SN260
was forced to drop the entire command.

Reserved

0x02
Aborted
Transaction

The transaction was not completed properly
and the SN260 was forced to abort the
transaction.

Reserved

0x03
Missing Frame
Terminator

The command was missing the Frame
Terminator. The SN260 was forced to drop the
entire command.

Reserved

0x04
Unsupported SPI
Command

The command contained an unsup-ported SPI
Byte. The SN260 was forced to drop the entire
command.

Reserved

SPI protocol SN260

30/47

SN260 in reset. While nRESET is asserted, assert (active low) either nWAKE or PTI_DATA
and then deassert nRESET to boot the SN260. Do not deassert nWAKE or PTI_DATA until
the SN260 asserts nHOST_INT, indicating that the SN260 has fully booted and is ready to
accept data over the SPI Protocol. Once nHOST_INT is asserted, nWAKE or PTI_DATA way
be deasserted. Refer to the EmberZNet Application Developer’s Guide (120-4028-000) for
more information on the bootloader and the format of the Bootloader Frame.

7.6.2 Unexpected resets

The SN260 is designed to protect itself against undefined behavior due to unexpected
resets. The protection is based on the state of Slave Select since the inter-command
spacing mandates that Slave Select must return to idle. The SN260’s internal SPI Protocol
uses Slave Select returning to idle as a trigger to re-initialize its SPI Protocol. By always re-
initializing, the SN260 is protected against the Host unexpectedly resetting or terminating a
transaction. Additionally, if Slave Select is active when the SN260 powers on, the SN260 will
ignore SPI data until Slave Select returns to idle. By ignoring SPI traffic until idle, the SN260
will not begin receiving in the middle of a transaction.

If the Host resets, in most cases it should reset the SN260 as well so that both devices are
once again in the same state: freshly booted. Alternately, the Host can attempt to recover
from the reset by recovering its previous state and resynchronizing with the state of the
SN260.

If the SN260 resets during a transaction, the Host can expect either a Wait Section timeout
or a missing Frame Terminator indicating an invalid Response.

If the SN260 resets outside of a transaction, the Host should proceed normally.

7.7 Transaction examples
This section contains the following transaction examples:

● SPI protocol version

● EmberZNet serial protocol frame — Version command

● SN260 reset

● Three-part transaction: Wake, Get Version, Stack Status Callback

7.7.1 SPI protocol version

Figure 9. SPI protocol version example

SN260 SPI protocol

 31/47

1. Activate Slave Select (nSSEL).

2. Transmit the command 0x0A - SPI Protocol Version Request.

3. Transmit the Frame Terminator, 0xA7.

4. Wait for nHOST_INT to assert.

5. Transmit and receive 0xFF until a byte other than 0xFF is received.

6. Receive response 0x82 (a byte other than 0xFF), then receive the Frame Terminator,
0xA7.

7. Bit 7 is always set and bit 6 is always cleared in the Version Response, so this is
Version 2.

8. De-activate Slave Select.

7.7.2 EmberZNet serial protocol frame — Version command

Figure 10. EmberZNet serial protocol frame - Version command example

1. Activate Slave Select (nSSEL).

2. Transmit the appropriate command:

– 0xFE: SPI Byte indicating an EZSP Frame

– 0x04: Length Byte showing the EZSP Frame is 4 bytes long

– 0x00: EZSP Sequence Byte (Note that this value should vary based upon previous
sequence bytes)

– 0x00: EZSP Frame Control Byte indicating a command with no sleeping

– 0x00: EZSP Frame ID Byte indicating the Version command

– 0x02: EZSP Parameter for this command (desiredProtocolVersion)

– 0xA7: Frame Terminator

3. Wait for nHOST_INT to assert.

4. Transmit and receive 0xFF until a byte other than 0xFF is received.

5. Receive response 0xFE (a byte other than 0xFF) and read the next byte for a length.

6. Stop transmitting after the number of bytes (length) is received plus the Frame
Terminator.

7. Decode the response:

– 0xFE: SPI Byte indicating an EZSP Frame

– 0x07: Length Byte showing the EZSP Frame is 7 bytes long

– 0x00: EZSP Sequence Byte (Note that this value should vary based upon previous
sequence bytes)

– 0x80: EZSP Frame Control Byte indicating a response with no overflow

– 0x00: EZSP Frame ID Byte indicating the Version response

– 0x02: EZSP Parameter for this response (protocolVersion)

– 0x02: EZSP Parameter for this response (stackType)

SPI protocol SN260

32/47

– 0x11: EZSP Parameter for this response (stackVersion). Note that this value may
vary).

– 0x30: EZSP Parameter for this response (stackVersion). Note that this value may
vary).

– 0xA7: Frame Terminator

8. De-activate Slave Select.

7.7.3 SN260 reset

Figure 11. SN260 reset example

1. nRESET toggles active low to reset the SN260.

2. nWAKE stays idle high between nRESET and nHOST_INT indicating the SN260
should continue with normal booting (do not enter the bootloader).

3. nHOST_INT asserts.

4. Activate Slave Select (nSSEL).

5. Transmit the command:

– 0xFE: SPI Byte indicating an EZSP Frame

– 0x03: Length Byte showing the EZSP Frame is 3 bytes long

– 0x00: EZSP Sequence Byte (Note that this value should vary based upon previous
sequence bytes)

– 0x00: EZSP Frame Control Byte indicating a command with no sleeping

– 0x06: EZSP Frame ID Byte indicating the callback command

– 0xA7: Frame Terminator

6. Wait for nHOST_INT to assert.

7. Transmit and receive 0xFF until a byte other than 0xFF is received.

8. Receive response 0x00 (a byte other than 0xFF).

9. Receive the Error Byte and decode (0x02 is enumerated as RESET_POWERON).

10. Receive the Frame Terminator (0xA7).

11. Response 0x00 indicates the SN260 has reset and the Host should respond
appropriately.

12. Deactivate Slave Select.

13. Since nHOST_INT does not assert again, there is no more data for the Host.

SN260 SPI protocol

 33/47

7.7.4 Three-part transaction: Wake, Get Version, Stack Status Callback

Figure 12. Timing diagram of the three-part transaction

1. Activate nWAKE and activate timeout timer.

2. SN260 wakes up (if not already) awake and enables communication.

3. nHOST_INT asserts, indicating the SN260 can accept commands.

4. Host sees nHOST_INT activation within 10ms and deactivates nWAKE and timeout
timer.

5. nHOST_INT de-asserts immediately after nWAKE.

6. Activate Slave Select.

7. Transmit the Command 0x0A - SPI Protocol Version Request.

8. Transmit the Frame Terminator, 0xA7.

9. Wait for nHOST_INT to assert.

10. Transmit and receive 0xFF until a byte other than 0xFF is received.

11. Receive response 0x82 (a byte other than 0xFF), then receive the Frame Terminator,
0xA7.

12. Bit 7 is always set and bit 6 is always cleared in the Version Response, so this is
Version 1.

13. Deactivate Slave Select.

14. Host begins timing the inter-command spacing of 1ms in preparation for sending the
next command.

15. nHOST_INT asserts shortly after deactivating Slave Select, indicating a callback.

16. Host sees nHOST_INT, but waits for the 1ms before responding.

17. Activate Slave Select.

18. Transmit the command:

– 0xFE: SPI Byte indicating an EZSP Frame

– 0x03: Length Byte showing the EZSP Frame is 3 bytes long

– 0x00: EZSP Sequence Byte (Note that this value should vary based upon previous
sequence bytes)

– 0x00: EZSP Frame Control Byte indicating a command with no sleeping

– 0x06: EZSP Frame ID Byte indicating the callback command

– 0xA7: Frame Terminator

19. Wait for nHOST_INT to assert.

20. Transmit and receive 0xFF until a byte other than 0xFF is received.

21. Receive response 0xFE (a byte other than 0xFF), read the next byte for a length.

22. Stop transmitting after the number of bytes (length) is received plus the Frame
Terminator.

SPI protocol SN260

34/47

23. Decode the response:

– 0xFE: SPI Byte indicating an EZSP Frame

– 0x04: Length Byte showing the EZSP Frame is 3 bytes long

– 0x00: EZSP Sequence Byte (Note that this value should vary based upon previous
sequence bytes)

– 0x80: EZSP Frame Control Byte indicating a response with no overflow

– 0x19: EZSP Frame ID Byte indicating the stackStatusHandler command

– 0x91: EZSP Parameter for this response (EmberStatus
EMBER_NETWORK_DOWN)

– 0xA7 – Frame Terminator

24. Deactivate Slave Select.

25. Since nHOST_INT does not assert again, there is no more data for the Host.

SN260 UART Gateway Protocol

 35/47

8 UART Gateway Protocol

The UART Gateway protocol is designed for network gateway systems in which the host
processor is running a full-scale operating system such as embedded Linux or Windows.
The host sends EmberZNet Serial Protocol (EZSP) commands to the UART interface using
Ember’s Asynchronous Serial Host (ASH) protocol. The EZSP commands are the same as
those used in the SPI protocol, but the SPI protocol is better suited for resource-constrained
microcontroller hosts since ASH uses considerably more host RAM and program storage.

ASH implements error detection/recovery and tolerates latencies on multi-tasking hosts due
to scheduling and I/O buffering. The ASH protocol is described in detail in the UART
Gateway Protocol Reference, 120-3010-000.

Ember supplies ASH host software in source form compatible with Linux and Windows. In
most cases it will need only a few simple edits to adapt it to a particular host system.

Figure 13. UART interface signals

The UART hardware interface uses the following SN260 signals:

● Serial data: TXD and RXD

The ASH protocol sends data in both directions, so both TXD and RXD signals are
required. An external pull-up resistor should be connected to TXD to avoid data glitches
while the SN260 is resetting.

● Flow control: nRTS and nCTS (optional)

ASH uses hardware handshaking for flow control: nRTS enables transmission from the
host to the SN260, and nCTS enables SN260 transmissions to the host. If the host
serial port cannot support RTS/CTS, XON/XOFF flow control may be used instead.
But, XON/XOFF will deliver slightly lower performance.

When using hardware flow control, the SN260’s nRTS must be able to control host
serial output. However, in many gateway systems, the host will not need to throttle
transmission by the SN260. In those systems nCTS may be left unconnected since it
has an internal pull-down and will be continuously asserted.

● Reset control: nRESET

The host must be able to reset the SN260 to run the ASH protocol. The best way to do
this is to use a host output connected to nRESET. If this is not feasible, the host can
send a special ASH frame that requests the SN260 to reboot, but this method is less
reliable than asserting nRESET and is not recommended for normal use.

UART Gateway Protocol SN260

36/47

The UART signals follow the usual conventions:

● When idle, serial data is high (marking)

● The start bit is low (spacing), and the stop bit is high (marking)

● Data bits are sent least-significant bit first, with positive (non-inverting) logic

● The flow control signals are asserted low

Note that commonly used EIA transceivers invert these logic levels.

Ember supplies the UART Gateway protocol software in two versions: one uses RTCS/CTS
flow control and the other uses XON/XOFF. The UART is set up as follows for these
versions:

● 115,200 bps for the RTS/CTS version

● 57,600 bps for the XON/XOFF version

● No parity bit

● 8 data bits

● 1 stop bit

The ASH protocol has been tuned for optimal operation with the two configurations listed
here. These configurations can be changed through manufacturing tokens, but doing so
may result in a degradation of performance. To learn how to change the configuration,
contact your local ST sales representative.

SN260 SIF module programming and debug interface

 37/47

9 SIF module programming and debug interface

SIF is a synchronous serial interface developed by Cambridge Consultants Ltd. It is the
primary programming and debug interface of the SN260. The SIF module allows external
devices to read and write memory-mapped registers in real-time without changing the
functionality or timing of the XAP2b core. See the application note PCB Design with an
SN260 (120-5047-000) for the PCB-level design details regarding the implementation of the
SIF interface.

The SN260 pins involved in the SIF Interface:

● nSIF_LOAD

● SIF_CLK

● SIF_MOSI

● SIF_MISO

● nRESET

In addition, the VDD_PADS and Ground Net are required for external voltage translation and
buffering of the SIF Signals.

The SIF interface provides the following:

● PCB production test interface via Virtual UART and an InSight Adapter

● Programming and debug interface during EmberZNet Application Development

In order to achieve the deep sleep currents specified in Table 5, a pull-down resistor must be
connected to the SIF_MOSI pin. In addition, Ember recommends a pull-up resistor to be
placed on the nSIF_LOAD pin in order to prevent noise from coupling onto the signal. Both
of these recommendations are documented within the SN260 Reference designs.

When developing application-specific manufacturing test procedures, Ember recommends
the designer refer to Manufacturing Test Guidelines (120-5016-000). This document
provides more detail regarding importance of designing the proper SIF interface as well as
timing of the SIF.

Typical application SN260

38/47

10 Typical application

Figure 14 illustrates the typical application circuit for the SN260 using the SPI Protocol. This
figure does not contain all decoupling capacitance required by the SN260. The Balun
provides the impedance transformation from the antenna to the SN260 for both TX and RX
modes. The harmonic filter provides additional suppression of the second harmonic, which
increases the margin over the FCC limit. The 24MHz crystal with loading capacitors is
required and provides the high frequency source for the SN260. The RC debounce filter (R4
and C7) is suggested to improve the noise immunity of the nRESET logic (Pin 11).

The SIF (nSIF_LOAD, SIF_MOSI, SIF_MISO, and SIF_CLK), Packet Trace (PTI_EN and
PTI_DATA), and SDBG signals should be brought out test points or, if space permits to a 10-
pin, dual row, 0.05-inch pitch header footprint. With a header populated, a direct connection
to the InSight Adapter is possible which enhances the debug capability of the SN260. For
more information, visit www.st.com/mcu.

Figure 14. Typical application circuit for SPI protocol

Table 10 contains the bill of materials for the application circuit shown in Figure 14.

SN260

SN260 Typical application

 39/47

Table 10. Bill of materials

Item Quantity Reference Description Manufacturer/Part No.

1 1 C2 Capacitor, 5pF, 50V, NPO, 0402

2 2 C1,C3 Capacitor, 0.5pF, 50V, NPO, 0402

3 4 C4,C5 Capacitor, 27pF, 50V, NPO, 0402

4 1 C6 Capacitor, 10µF, 10V, TANTALUM, 3216 (SIZE A)

5 1 C7 Capacitor, 10pF, 5V, NPO, 0402

6 1 L1 Inductor, 2.7nH, +/- 5%, 0603, multi-layer
MURATA

LQG18HN2N7

7 2 L2 Inductor, 3.3nH, +/- 5%, 0603, multi-layer
MURATA

LQG18HN3N3

8 1 R1 Resistor, 169 kΩ, 1%, 0402

9 1 R2 Resistor, 100 kΩ, 5% O402

10 1 R3 Resistor, 3.3 kΩ, 5% 0402

11 1 R4 Resistor, 10 kΩ, 5%, 0402

12 1 U1 SN260 single-chip ZigBee/802.15.4 solution
STMicroelectronics

SN260

13 1 X1
Crystal, 24.000MHz, ±10 PPM tolerance,
±25 PPM stability, 18pF, - 40°C to + 85°C

ILSI

ILCX08-JG5F18-24.000MHZ

14 1 BLN1 BALUN, ceramic
TDK

HHM1521

Package mechanical data SN260

40/47

11 Package mechanical data

The SN260 package is a plastic 40-pin QFN that is 6mm x 6mm x 0.9mm. Figure 15
illustrates the package drawing.

Figure 15. Package drawing

12 Ordering information

Use the following part numbers to order the SN260:

● SN260QT Reel, RoHS

● SN260Q Tray, RoHS

To order parts, contact your local STMicroelectronics sales representative, or go to our Web
site: www.st.com.

SN260 Electrical characteristics

 41/47

13 Electrical characteristics

13.1 Absolute maximum ratings
Table 11 lists the absolute maximum ratings for the SN260.

13.2 Recommended operating conditions
Table 12 lists the rated operating conditions of the SN260.

Table 11. Absolute maximum ratings

Parameter Test conditions Min. Max. Unit

Regulator voltage (VDD_PADS) - 0.3 3.6 V

Core voltage (VDD_24MHZ, VDD_VCO,
VDD_RF, VDD_IF, VDD_PADSA, VDD_FLASH,
VDD_SYNTH_PRE, VDD_CORE)

- 0.3 2.0 V

Voltage on RF_P,N; RF_TX_ALT_P,N - 0.3 3.6 V

RF input power

(For max. level for correct packet reception, see
Table 16)

+15 dBm

Voltage on nSSEL_INT, MOSI, MISO, SCLK,
nSSEL, PTI_EN, PTI_DATA, nHOST_INT,
SIF_CLK, SIF_MISO, SIF_MOSI, nSIF_LOAD,
SDBG, LINK_ACTIVITY, nWAKE, nRESET,
VREG_OUT

- 0.3 VDD_PADS+0.3 V

Voltage on TX_ACTIVE, BIAS_R, OSCA, OSCB - 0.3 VDD_CORE+0.3 V

Storage temperature - 40 + 140 °C

Table 12. Operating conditions

Parameter Test conditions Min. Typ. Max. Unit

Regulator input voltage (VDD_PADS) 2.1 3.6 V

Core input voltage (VDD_24MHZ, VDD_VCO,
VDD_RF, VDD_IF, VDD_PADSA, VDD_FLASH,
VDD_SYNTH_PRE, VDD_CORE)

1.7 1.8 1.9 V

Temperature range - 40 + 85 °C

Electrical characteristics SN260

42/47

13.3 Environmental characteristics
Table 13 lists the environmental characteristics of the SN260.

13.4 DC electrical characteristics
Table 14 lists the DC electrical characteristics of the SN260.

Table 13. Environmental characteristics

Parameter Test Conditions Min. Typ. Max. Unit

ESD (human body model) On any pin - 2 + 2 kV

ESD (charged device model) Non-RF pins - 400 + 400 V

ESD (charged device model) RF pins - 225 + 225 V

MSL (moisture sensitivity level) MSL3

Table 14. DC characteristics

Parameter Test Conditions Min. Typ. Max. Unit

Regulator input voltage (VDD_PADS) 2.1 3.6 V

Power supply range (VDD_CORE) Regulator output or external input 1.7 1.8 1.9 V

Deep sleep current

Quiescent current, including internal RC
oscillator

At 25° C 1.0 µA

RESET current

Quiescent current, nRESET asserted
Typ at 25° C/3V
Max at 85° C/3.6V

1.5 2.0 mA

RX current

Radio receiver, MAC, and baseband
(boost mode)

30.0 mA

Radio receiver, MAC, and baseband 28.0 mA

CPU, RAM and Flash memory At 25° C and 1.8V core 8.0 mA

Total RX current (= IRadio receiver, MAC and

baseband, CPU + IRAM, and Flash memory)
At 25° C, VDD_PADS = 3.0V 36.0 mA

TX current
Radio transmitter, MAC, and baseband
(boost mode)

At max. TX power (+ 5dBm typical) 34.0 mA

Radio transmitter, MAC, and baseband

At max. TX power (+ 3dBm typical) 28.0 mA

At 0dBm typical 24.0 mA

At min. TX power (- 32dBm typical) 19.0 mA

CPU, RAM, and Flash memory At 25° C, VDD_PADS = 3.0V 8.0 mA

Total TX current (= IRadio transmitter, MAC and

baseband, CPU + IRAM, and Flash memory)
At 25° C and 1.8V core;
max. power out

36.0 mA

SN260 Electrical characteristics

 43/47

13.5 Digital I/O specifications
Table 15 contains the digital I/O specifications for the SN260. The digital I/O power (named
VDD_PADS) comes from three dedicated pins (pins 13, 19, and 24). The voltage applied to
these pins sets the I/O voltage.

Table 15. Digital I/O specifications

Parameter Name Min. Typ. Max. Unit

Voltage supply VDD_PADS 2.1 3.6 V

Input voltage for logic 0 VIL 0 0.2 x VDD_PADS V

Input voltage for logic 1 VIH 0.8 x VDD_PADS VDD_PADS V

Input current for logic 0 IIL –0.5 µA

Input current for logic 1 IIH 0.5 µA

Input pull-up resistor value RIPU 30 kΩ

Input pull-down resistor value RIPD 30 kΩ

Output voltage for logic 0 VOL 0 0.18 x VDD_PADS V

Output voltage for logic 1 VOH 0.82 x VDD_PADS VDD_PADS V

Output source current (standard current
pad)

IOHS 4 mA

Output sink current (standard current
pad)

IOLS 4 mA

Output source current (high current pad:
pins 33, 34, and 35)

IOHH 8 mA

Output sink current (high current pad:
pins 33, 34, and 35)

IOLH 8 mA

Total output current (for I/O pads) IOH + IOL 40 mA

Input voltage threshold for OSCA 0.2 x VDD_CORE 0.8 x VDD_PADS V

Output voltage level (TX_ACTIVE) 0.18 x VDD_CORE 0.82 x VDD_CORE V

Output source current (TX_ACTIVE) 1 mA

Electrical characteristics SN260

44/47

13.6 RF electrical characteristics

13.6.1 Receive

Table 16 lists the key parameters of the integrated IEEE 802.15.4 receiver on the SN260.

Note: Receive measurements were collected with Ember’s SN260 Lattice Balun Reference
Design at 2440 MHz and using the EmberZNet software stack Version 3.0.1. The Typical
number indicates one standard deviation above the mean, measured at room temperature
(25° C). The Min and Max numbers are measured over process corners at room
temperature (25° C).

Table 16. Receive characteristics

Parameter Test conditions Min. Typ. Max. Unit

Frequency range 2400 2500 MHz

Sensitivity (boost mode)
1% PER, 20byte packet defined by
IEEE 802.15.4

-100 -95 dBm

Sensitivity
1% PER, 20byte packet defined by
IEEE 802.15.4

-99 -94 dBm

High-side adjacent channel rejection IEEE 802.15.4 signal at -82dBm 35 dB

Low-side adjacent channel rejection IEEE 802.15.4 signal at - 82dBm 35 dB

2nd high-side adjacent channel rejection IEEE 802.15.4 signal at - 82dBm 40 dB

2nd low-side adjacent channel rejection IEEE 802.15.4 signal at - 82dBm 40 dB

Channel rejection for all other channels IEEE 802.15.4 signal at - 82dBm 40 dB

802.11g rejection centered at + 12MHz or
- 13MHz

IEEE 802.15.4 signal at - 82dBm 35 dB

Maximum input signal level for correct
operation (low gain)

0 dBm

Image suppression 30 dB

Co-channel rejection IEEE 802.15.4 signal at - 82dBm - 6 dBc

Relative frequency error

(2 x 40 ppm required by IEEE 802.15.4)
- 120 + 120 ppm

Relative timing error

(2 x 40 ppm required by IEEE 802.15.4)
- 120 + 120 ppm

Linear RSSI range 40 dB

RSSI range -90 -30 dB

SN260 Electrical characteristics

 45/47

13.6.2 Transmit

Table 17 lists the key parameters of the integrated IEEE 802.15.4 transmitter on the SN260.

Note: Transmit measurements were collected with Ember’s SN260 Lattice Balun Reference
Design at 2440 MHz and using the EmberZNet software stack Version 3.0.1. The Typical
number indicates one standard deviation above the mean, measured at room temperature
(25° C). The Min and Max numbers are measured over process corners at room
temperature (25° C).

13.6.3 Synthesizer

Table 18 lists the key parameters of the integrated synthesizer on the SN260.

Table 17. Transmit characteristics

Parameter Test conditions Min. Typ. Max. Unit

Maximum output power (boost mode) At highest power setting 4.5 dBm

Maximum output power At highest power setting –0.5 2.5 dBm

Minimum output power At lowest power setting –32 dBm

Error vector magnitude
As defined by IEEE 802.15.4,
which sets a 35% maximum

15 25 %

Carrier frequency error –40 + 40 ppm

Load impedance 200 Ω

PSD mask relative 3.5 MHz away –20 dB

PSD mask absolute 3.5 MHz away –30 dBm

Table 18. Synthesizer characteristics

Parameter Test conditions Min. Typ. Max. Unit

Frequency range 2400 2500 MHz

Frequency resolution 11.7 kHz

Lock time From off, with correct VCO DAC setting 100 µs

Relock time
Channel change or RX/TX turnaround (IEEE
802.15.4 defines 192s turnaround time)

100 µs

Phase noise at 100 kHz –71 dBc/Hz

Phase noise at 1 MHz –91 dBc/Hz

Phase noise at 4 MHz –103 dBc/Hz

Phase noise at 10 MHz –111 dBc/Hz

Revision history SN260

46/47

14 Revision history

Table 19. Document revision history

Date Revision Changes

11-Dec-2006 1 Initial release.

03-Dec-2007 2 Document status promoted from Preliminary Data to Datasheet.

17-Apr-2008 3
Corrected units value in Figure 7: SPI protocol timing parameters on
page 26.

23-Mar-2009 4
Added UART Gateway Protocol section. Removed EmberZNet serial
protocol section.

SN260

 47/47

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2009 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

	1 Abbreviations and acronyms
	Table 1. Abbreviations and acronyms

	2 References
	3 General description
	4 Pin assignment
	Figure 1. SN260 pin assignment for SPI protocol
	Figure 2. SN260 pin assignment for UART protocol
	Table 2. Pin descriptions

	5 Top-level functional description
	Figure 3. SN260 block diagram

	6 Functional description
	6.1 Receive (RX) path
	6.1.1 RX baseband
	6.1.2 RSSI and CCA
	Table 3. CCA mode behavior

	6.2 Transmit (TX) path
	6.2.1 TX baseband
	6.2.2 TX_ACTIVE signal

	6.3 Integrated MAC module
	6.4 Packet trace interface (PTI)
	6.5 16-bit microprocessor
	6.6 Embedded memory
	6.6.1 Simulated EEPROM
	6.6.2 Flash information area (FIA)

	6.7 Encryption accelerator
	6.8 nRESET signal
	6.9 Reset detection
	6.10 Power-on-reset (POR)
	Table 4. POR specifications

	6.11 Clock sources
	6.11.1 High-frequency crystal oscillator
	Table 5. High-frequency crystal specifications

	6.11.2 Internal RC oscillator
	Table 6. RC oscillator specifications

	6.12 Random number generator
	6.13 Watchdog timer
	6.14 Sleep timer
	6.15 Power management

	7 SPI protocol
	7.1 Physical interface configuration
	Figure 4. SPI transfer format, Mode 0 and Mode 3

	7.2 SPI transaction
	Figure 5. General timing diagram for a SPI transaction
	7.2.1 Command section
	7.2.2 Wait section
	7.2.3 Response section
	7.2.4 Asynchronous signaling
	7.2.5 Spacing
	7.2.6 Waking the SN260 from sleep
	Figure 6. SN260 wake sequence

	7.2.7 Error conditions

	7.3 SPI protocol timing
	Figure 7. SPI protocol timing waveform
	Table 7. SPI protocol timing parameters

	7.4 Data format
	Figure 8. SPI protocol data format

	7.5 SPI byte
	Table 8. SPI commands & responses
	7.5.1 Primary SPI bytes
	7.5.2 Special response bytes
	Table 9. Byte values used as error codes

	7.6 Powering on, power cycling, and rebooting
	7.6.1 Bootloading the SN260
	7.6.2 Unexpected resets

	7.7 Transaction examples
	7.7.1 SPI protocol version
	Figure 9. SPI protocol version example

	7.7.2 EmberZNet serial protocol frame — Version command
	Figure 10. EmberZNet serial protocol frame - Version command example

	7.7.3 SN260 reset
	Figure 11. SN260 reset example

	7.7.4 Three-part transaction: Wake, Get Version, Stack Status Callback
	Figure 12. Timing diagram of the three-part transaction

	8 UART Gateway Protocol
	Figure 13. UART interface signals

	9 SIF module programming and debug interface
	10 Typical application
	Figure 14. Typical application circuit for SPI protocol
	Table 10. Bill of materials

	11 Package mechanical data
	Figure 15. Package drawing

	12 Ordering information
	13 Electrical characteristics
	13.1 Absolute maximum ratings
	Table 11. Absolute maximum ratings

	13.2 Recommended operating conditions
	Table 12. Operating conditions

	13.3 Environmental characteristics
	Table 13. Environmental characteristics

	13.4 DC electrical characteristics
	Table 14. DC characteristics

	13.5 Digital I/O specifications
	Table 15. Digital I/O specifications

	13.6 RF electrical characteristics
	13.6.1 Receive
	Table 16. Receive characteristics

	13.6.2 Transmit
	Table 17. Transmit characteristics

	13.6.3 Synthesizer
	Table 18. Synthesizer characteristics

	14 Revision history
	Table 19. Document revision history

