

300 mA very low quiescent current linear regulator IC

Datasheet - production data

Features

- Input voltage from 1.5 to 5.5 V
- Ultra low dropout voltage (300 mV typ. at 300 mA load)
- Very low quiescent current (20 µA typ. at no load, 0.03 µA typ. in off mode)
- Output voltage tolerance: ± 0.5 % (A version) or ± 2.0 % @ 25 °C (standard version)
- 300 mA guaranteed output current
- High PSRR (80 dB@1 kHz, 50 db@100 kHz)
- Wide range of output voltages available on request: from 0.8 V up to 5.0 V in 50 mV step
- Logic-controlled electronic shutdown
- Internal soft-start
- Optional output voltage discharge feature
- Compatible with ceramic capacitor Cout = 0.47 µF
- Internal constant current and thermal protections
- Available in DFN4 1x1
- Operating temperature range: -40 °C to 125 °C

Applications

- Mobile phones
- Tablets
- Digital still cameras (DSC)
- Cordless phones and similar batterypowered systems
- Portable media players

Description

The LD39030 high accuracy voltage regulator provides 300 mA of maximum current from an input voltage ranging from 1.5 V to 5.5 V, with a typical dropout voltage of 300 mV.

It is available in DFN4 1x1 package, allowing the maximum space saving.

The device is stabilized with a ceramic capacitor on the output. The ultra low drop voltage, low quiescent current and low noise features, together with the internal soft-start circuit, make the LD39030 suitable for low power batteryoperated applications.

An enable logic control function puts the LD39030 in shutdown mode allowing a total current consumption lower than 0.1 µA. Constant current and thermal protection are provided.

August 2016

DocID028649 Rev 3

This is information on a product in full production.

Contents

1	Diagran	n	3
2	Pin con	figuration	4
3	Typical	application	5
4	Maximu	ım ratings	6
5	Electric	al characteristics	7
6	Applica	tion information	9
	6.1	Soft start function	9
	6.2	Output discharge function	9
	6.3	Input and output capacitors	9
7	Typical	characteristics	10
8	Packag	e information	15
	8.1	DFN4 1x1 package information	16
9	Orderin	g information	19
10	Revisio	n history	20

1 Diagram

The output discharge MOSFET is optional.

2 Pin configuration

Table 1: Pin description

Pin n° DFN4 1x1	Symbol	Function	
1	OUT	Output voltage	
2	GND	Common ground	
3	EN	Enable pin logic input: Low = shutdown, High = active	
4	IN	Input voltage	
Thermal pad	GND	Connect to GND on the PCB	

3 Typical application

4 Maximum ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{IN}	Input voltage	- 0.3 to 7	V
Vout	Output voltage	- 0.3 to V _{IN} + 0.3	V
Ven	Enable input voltage	- 0.3 to 7	V
Іоит	Output current	Internally limited	mA
PD	Power dissipation	Internally limited	mW
Tstg	Storage temperature range	- 40 to 150	°C
Тор	Operating junction temperature range	- 40 to 125	°C

Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. All values are referred to GND.

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thJA}	Thermal resistance junction-ambient	250	°C/W

Table 4: ESD Performance

Symbol	Parameter	Test conditions	Value	Unit
		HBM	4	kV
ESD	ESD Protection voltage	MM	400	V
		CDM	500	V

5 Electrical characteristics

 T_J = 25 °C, V_{IN} = $V_{OUT(NOM)}$ + 1 V , C_{IN} = C_{OUT} = 1 $\mu F,\ I_{OUT}$ = 1 mA, V_{EN} = $V_{IN},\ unless otherwise specified.$

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
Vin	Operating input voltage		1.5		5.5	V	
	Vout accuracy	Iout = 1 mA, TJ = 25 °C	-2		2	%	
Vout (LD39030T, LD39030DT)		I _{OUT} = 1 mA, -40 °C < Τ _J < 125 °C	-3		3	%	
	Vout accuracy	$I_{OUT} = 1 \text{ mA}, \text{T}_{\text{J}} = 25 ^{\circ}\text{C}$	-0.5		0.5	%	
Vout	(LD39030AT, LD39030ADT)	I _{OUT} = 1 mA, -40 °C < Τ _J < 125 °C	-1.5		1.5	%	
ΔVουτ	Static line	$ V_{OUT(NOM)} + 1 V \le V_{IN} \le 5.5 V, $		0.02		%/V	
	regulation ⁽¹⁾	-40 °C < T _J < 125 °C			0.2		
ΔVουτ	Static load regulation	IOUT = 0 mA to 300 mA		18		mV	
	Static load regulation	-40 °C < T」< 125 °C			0.01	%/mA	
		Iout = 30 mA,Vout = 2.8 V		35			
Vdrop	Dropout voltage	lоuт = 300 mA, Vouт = 2.8 V -40 °C < TJ < 125 °C		330		mV	
θN	Output noise voltage	10 Hz to 100 kHz, I _{OUT} = 10 mA		45		µVRMS/V	
		$V_{IN} = V_{OUT(NOM)} + 1 V +/- V_{RIPPLE}$ $V_{RIPPLE} = 0.2 V Freq .=1 kHz$ $I_{OUT} = 30 mA$		80			
SVR	Supply voltage rejection	$V_{IN} = V_{OUT(NOM)} + 1 V +/- V_{RIPPLE}$ $V_{RIPPLE} = 0.2 V$ $Freq. = 100 kHz$ $I_{OUT} = 30 mA$		55		dB	
lq	O dia sector sector	louт = 0 mA		20	40		
	Quiescent current	louт = 300 mA		130		μA	
IStandby	Standby Current	V_{IN} input current in OFF MODE: V_{EN} = GND		0.03	1	μΑ	
Isc	Short circuit current	R _L = 0		480		mA	
Ron	Output voltage discharge MOSFET	(only on LD39030DT, LD39030ADT)		100		Ω	
V _{EN}	Enable input logic low	V _{IN} = 1.5 V to 5.5 V -40 °C < T _J < 125 °C			0.4	V	
- LIN	Enable input logic high	V _{IN} = 1.5 V to 5.5 V -40 °C < TJ < 125 °C	1			V	
I _{EN}	Enable pin input current	V _{EN} = V _{IN}			100	nA	

Table 5	Flectrical	characteristics

Electrical characteristics

LD39030

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
T _{ON} ⁽²⁾	Turn on time			100		μs
-	Thermal shutdown			160		°C
T _{SHDN}	Hysteresis			20		
Соит	Output capacitor	Capacitance (see Figure 17: "Stability area vs. (Cout, ESR)")	0.47		22	μF

Notes:

 $^{(1)}Not$ applicable for $V_{OUT(NOM)} > 4.5$ V

 $^{(2)}$ Turn-on time is time measured between the enable input just exceeding VEN high value and the output voltage just reaching 95 % of its nominal value

6 Application information

6.1 Soft start function

The LD39030 has an internal soft start circuit. By increasing the startup time up to 100µs, without the need of any external soft start capacitor, this feature is able to keep the regulator inrush current at startup under control.

6.2 Output discharge function

The LD39030 integrates a MOSFET connected between Vout and GND. This transistor is activated when the EN pin goes to low logic level and has the function to quickly discharge the output capacitor when the device is disabled by the user.

The device is available with or without auto-discharge feature.

See Section 9: "Ordering information" for more details.

6.3 Input and output capacitors

The LD39030 requires external capacitors to assure the regulator control loop stability.

Any good quality ceramic capacitor can be used but, the X5R and the X7R are suggested since they guarantee a very stable combination of capacitance and ESR overtemperature.

Locating the input/output capacitors as closer as possible to the relative pins is recommended.

The LD39030 requires an input capacitor with a minimum value of 1 µF.

This capacitor must be located as closer as possible to the input pin of the device and returned to a clean analog ground.

The control loop of the LD39030 is designed to work with an output ceramic capacitor.

This capacitor must meet the requirements of minimum capacitance and equivalent series resistance (ESR), as shown in *Figure 17: "Stability area vs. (C_{OUT}, ESR)"*. To assure stability, the output capacitor must maintain its ESR and capacitance in the stable region, over the full operating temperature range.

The LD39030 shows stability with a minimum effective output capacitance of 220 nF.

However, to keep stability in all operating conditions (temperature, input voltage and load variations), a minimum output capacitor of 0.47 μ F is recommended.

The suggested combination of 1 μ F input and output capacitors offers a good compromise among the stability of the regulator, optimum transient response and total PCB area occupation.

7 Typical characteristics

(C_{IN} = C_{OUT} = 1 μ F, V_{EN} to V_{IN}, T_J = 25°C unless otherwise specified)

57

Typical characteristics

DocID028649 Rev 3

11/21

DocID028649 Rev 3

Typical characteristics

DocID028649 Rev 3

8 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

8.1 **DFN4 1x1 package information**

16/21

Package information

			Package information
	Table 6: DFN4 1x	1 mechanical data	
Dim.		mm.	
Dim.	Min.	Тур.	Max.
А	0.34	0.37	0.40
A1	0	0.02	0.05
A3		0.10	
b	0.17	0.22	0.27
D	0.95	1.00	1.05
D2	0.43	0.48	0.53
E	0.95	1.00	1.05
E2	0.43	0.48	0.53
е		0.65	
L	0.20	0.25	0.30
К	0.15		

9 Ordering information

	Table 7:	Order code		
Order code	Output voltage (V)	Auto-discharge	Tolerance (%)	Marking
LD39030DTPU18R	1.0	Vee	2	X7
LD39030ADTPU18R	1.8	Yes	0.5	W7
LD39030DTPU25R	2.5	Yes	2	XA
LD39030ADTPU25R	2.5	res	0.5	WA
LD39030DTPU28R		Yes	2	XC
LD39030ADTPU28R	2.8	Tes	0.5	WC
LD39030DTPU30R	3.0	Vee	2	XF
LD39030ADTPU30R	3.0	Yes	0.5	WF
LD39030DTPU33R	3.3	Yes	2	XJ

10 **Revision history**

Table 8: Document revision his

Date	Revision	Changes
16-Nov-2015	1	Initial release.
18-May-2016	2	Updated Section 9: "Ordering information". Minor text changes.
30-Aug-2016	3	Updated Section 9: "Ordering information". Minor text changes.

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

