The EZ-USB"
Integrated Circuit

Technical Reference

The information in this document is subject to
change without notice and should not be
construed as a commitment by Cypress
Semiconductor Corporation. While reasonable
precautions have been taken, Cypress
Semiconductor Corporation assumes no
responsibility for any errors that may appear in
this document.

No part of this document may be copied or
reproduced in any form or by any means without
the prior written consent of Cypress
Semiconductor Corporation.

Cypress Semiconductor Corporation products are
not designed, intended, or authorized for use as
components in systems intended for surgical
implant into the body, or other applications
intended to support or sustain life, or for any
other application in which the failure of the
Cypress Semiconductor Corporation product
could create a situation where personal injury or
death may occur. Should Buyer purchase or use
Cypress Semiconductor Corporation products for
any such unintended or unauthorized application,
Buyer shall indemnify and hold Cypress
Semiconductor Corporation and its officers,
employees, subsidiaries, affiliates and distributors
harmless against all claims, costs, damages,
expenses, and reasonable attorney fees arising
out of, directly or indirectly, any claim of personal
injury or death associated with such unintended
or unauthorized use, even if such claim alleges
that Cypress Semiconductor Corporation was
negligent regarding the design or manufacture of
the part.

The acceptance of this document will be construed
as an acceptance of the foregoing conditions.

Appendices A, B, and C of this manual contain
copyrighted material that is the property of
Synopsys, Inc., © 1998, ALL RIGHTS RESERVED.

The EZ-USB Technical Reference Manual

Copyright 2000, Cypress Semiconductor
Corporation.

All rights reserved.

Development Kit — Getting Started

Documentation for the EZ-USB™ Xcelerator™ Development it. Includes an
overview of the kit, descriptions of kit components with installation instruc-
tions, and details about the development board.

Technical Reference

Documentation of the EZ-USB controller. Includes details about the CPU,
memory, input/output, ReNumeration™, bulk transfers, endpoint zero, iso-
chronous transfers, interrupts, resets, power management, registers, AC/
DC parameters, and packages.

Appendices

Documentation for the 8051 enhanced core. Includes an introduction, an
architectural overview, and a hardware description.

Registers

EZ-USB register maps.

Technical Support:

Phone: (858) 613-7929

E-mail: usbhapps@cypress.com
Website:

WWW.Cypress.com

EZ-USB

Technical Reference Manual
Version 1.9

May 2000

EZ-USB
Technical Reference Manual

Table of Contents

Table of Contents i
FIgUIES . Vil
Tables ... e Xi
1 INtroducing EZ-USB ..o 1-1
1.1 (oo [Tod 1 o] o IS 1-1
1.2 EZ-USB BIOCK DIagramsccccoooiuririiiniiieieiiee e e e 1-2
1.3 The USB SPECIfICAtIONcuiiiiiiiiiiiiaiiiii et 1-3
1.4 TOKeNS anNd PIDS ..o e 1-4
15 HOSE IS IMASTET ...ttt e e e e e e e e e eeeeaeaerenees 1-5
1.5.1 Receiving Data from the HOStcccuviiiiiiiiiiiie 1-6
1.5.2 Sending Datato the HOStcoooeiiiiiiiiiiiiiic e 1-6
1.6 (010 =3 11 = Tox 1[0 o PSSP 1-6
1.7 A e e 1-6
1.7.1 BUIK Transfers ... e 1-7
1.7.2 INterrupt TranSTers ... 1-7
1.8 EZ-USB Transfer TYPES ...cooeiiiiieiiiiieee e s 1-7
1.8.1 ISOChronous Transfers ... 1-8
1.8.2 Control TranSTersooo o 1-8
1.9 [LU g1 = U o] o I PP 1-9
1.0 TREUSB COrE ...ttt e e e e e e e ae e 1-10
1.11 EZ-USB MICIOPIOCESSON ...oiiieeieeeiaeieeeieieieieitiia e e s e e e e e e eeaeeeeeeesesenenennnnns 1-11
1.12 ReNUMEIALION ...t e e e e e 1-12
1.13 EZ-USB ENAPOINTS ...ooiiiiiiiiiiiaiiaien e e ee e ettt e s e e e e e aeeeeeaees 1-12
1.13.1 EZ-USB Bulk ENAPOINtScccooiiiiiiiiiiiiiiiiiei e 1-13
1.13.2 EZ-USB Control Endpoint Zerocccoeeeeeeeiiirieeeiiiiiiiinnnens 1-13
1.13.3 EZ-USB Interrupt ENAPOINtSciiiiiiieiiiiiiieeeeie e 1-14
1.13.4 EZ-USB Isochronous Endpointsccccceeeeiiinineneneneeeeeeeeee 1-14
1.14 Fast Transfer MOUESccooiiiiiiiiiii et 1-14
115 INTEITUPLS oot e et e e e e e e e e e e e e e eeanas 1-15

EZ-USB TRM v1.9 Table of Contents i

1.16 Resetand Power Managementcueeieiiieeeeionaniniisiieieieee e 1-15
1.17 EZ-USB Product Familycccoiiiiiiiiiiiiiiieie e 1-16
1.18 Summary of AN2122, AN2126 FEAUIeSeuvuriieiiieieieeeeieeieeieinienens 1-16
1.19 REVISION ID ooiiiiiiieii ettt et e e et e e e et e e e aaan s 1-17
1.20 PiN DESCIIPLONS ...uuiiiiiiiiiiiiieieie e ee e e e e e e e e e e e e e e e e e e eaeas 1-18
EZ-USB CPU e e e 2-1
2.1 e i goTo (U o110 o RSO PR 2-1
2.2 8051 ENNANCEMENLS ..covniiiiieee e e et ar s 2-1
2.3 EZ-USB ENhanCemeENtScooiuiiiiiiee e 2-2
2.4 EZ-USB RegiSter INEerfacCe ... 2-2
2.5 EZ-USB INterNal RAMoouiiiiii e 2-3
2.6 FL@ I = o] O PPORRRPPN 2-3
2.7 INEEITUPLS .o e 2-4
2.8 POWET CONIOL ..oviiiiii et e e e e e e e e eeanes 2-5
2.9 S R S et raaaa 2-6
P K O B 1 (=] ¢ g F= L =0 LSRR 2-7
2. 00 RSB et et aaa 2-7
EZ-USB MEMOIY ..ot 3-1
3.1 INTFOTUCTION .ot 3-1
3.2 BOS51 MEIMOIY ...ttt ettt e e e e e e e e e e eeeeaenennes 3-2
3.3 Expanding EZ-USB MEMOIYcuiiiiiiiiiiiieiiaeeaiieiiier e 3-4
3.4 CSHaANAd OEH# SIGNAIS ...ooieeiieee e s 3-5
3.5 EZ-USB ROM VEISIONS ..ottt e e e e aaanes 3-7
EZ-USB INpUY/OULPULcoeeeiee e 4-1
4.1 e oTo (U o1 T0] o TP TRRP 4-1
4.2 (@ 28 =0 ¢ £ PPN 4-2
4.3 [O POM REQISTEIS .. 4-5
4.4 D2 O o] o] i fo] | 1= CH USRI 4-6
4.5 8051 12C CONLIOIIET ...ceveeeeee e e 4-6
45.1 ST AR T e 4-8
45.2 ST O P e 4-8
4.6 (OF0] 011 fo] I =11 £SO UPRTR 4-8
4.6.1 LASTRD oot 4-9
4.6.2 DONE ..o e e e e e e e e e e e e eeas 4-9
A.6.3 ACK e 4-9
4.7 SHTALUS BItS ..iiiiiiiiiie e e e raa s 4-9
4.7.1 BERR . 4-10
Table of Contents EZ-USB TRM v1.9

4.7.2 IDL, IDO e 4-10

4.8 Sending I2C Dataccoereiiiiiiiiiiiieie et 4-10
4.9 ReCEIVING [2C DALAuvvvieiiiiiiiiiee ettt 4-11
7 O I 1 O = o To] I T Vo [T PR 4-12
5 EZ-USB Enumeration and ReNumerationcccccceeeevviieeeennnnn. 5-1
5.1 (oo [o110 o IS 5-1
5.2 The Default USB DEVICEcoooiiiiiiiie et 5-2
5.3 EZ-USB Core Response to EPO Device REqQUESLSccccvvveviriereeeneenn. 5-4
54 FIrmware LOAdouuiiiiiiiiie e e 5-5
55 ENUMeEration MOAEScoovviiiiiiiiee e e 5-7
5.6 NO Serial EEPROMuiiiii et e 5-8
57 Serial EEPROM Present, First Byte iS OXBOcccccooeieieiiiiiiiieiciiiiiiiennns 5-9
5.8 Serial EEPROM Present, First Byte iS OXB2cccoeviiiiiiiviviiiiiiiiinnns 5-10
5.9 RENUMEIALION'ot e e e e 5-11
5.10 Multiple RENUMErAtIONS'coevviiiiiiiiiiiieiee e 5-13
5.11 Default DESCIPLOLccoieieieeee et 5-13
6 EZ-USB BUIK Transferscooiiiiiiii e 6-1
6.1 (oo [o110 o IS 6-1
6.2 BUIK IN TranSfersScoovuiiiieiiii e e 6-4
6.3 INEITUPE TIANSTEIS .. 6-5
6.4 EZ-USB Bulk IN EXample ... 6-5
6.5 BUIK QUT TranSferscooo it 6-6
6.6 ENAPOINt PAINNG ...oveiiiiiiiiiiieieie e 6-8
6.7 Paired IN ENdpPOiNt STALUSeeeiiiiiiiiiieiieeee e 6-9
6.8 Paired OUT ENdPOoint STAtUSccoeeviiiiiiiiiiaiee e 6-10
6.9 Using Bulk BUffer MEMOIYoovviiiiiiiiie e 6-10
6.10 Data Toggle CONLIOlcoooieiiie e s 6-11
6.11 Polled Bulk Transfer EXample ..o e 6-13
6.12 ENUMEration NOLEo.ouuiiiiiiii e e e 6-14
6.13 Bulk ENdpoint INTEITUPLScooiiiiiii e s 6-15
6.14 Interrupt Bulk Transfer EXample ..o 6-16
6.15 ENUMeEration NOLEooouuiiiiiii e e 6-21
6.16 The AULOPOINTET ...cooiiiiiii ettt e e e e e e ee e 6-22
7 EZ-USB ENAPOINT ZEIO ...oieeiieiie e 7-1
7.1 INTFOTUCTION .. 7-1
7.2 Control ENdpoint EPOoooiiiiii e 7-2
7.3 USB REQUESTS ...ttt ettt e e et e e e e e e e 7-5

EZ-USB TRM v1.9

Table of Contents iii

7.3.1 GeE STALUS .oven i e 7-7
7.3.2 SELFALUIE ...ccee e 7-10
7.3.3 Clear FEALUIEuviieieii et 7-12
7.3.4 GEtDESCHPION .ottt 7-12
734.1 Get DeSCIIPIOr-DEVICEcoiiiiiiiiiiie et 7-14
7.3.4.2 Get Descriptor-Configuration.............cccceeienieieeenieieee e 7-15
7.3.4.3 Get DeSCIIPIOr-SIING «.coovieiee it 7-16
7.3.5 SEUDESCHPION .oiiiiiiiiiiie et 7-16
7.3.6 Set ConfigUrationcccooieeiiiiiiiiiiiiie e 7-19
7.3.7 Get Configurationcccccvurimmmimiiiiiie e 7-19
7.3.8 SetInterfacecooveiiieii 7-20
7.3.9 GetINterfacecoovviiiii i 7-21
7.3.10 St AAArESS ...oovviiieeiece e e e 7-21
7.3.11 SYNCFrameccoooiiiiiiiiiiie e 7-22
7.3.12 Firmware Loadccoovviiiiiiiiiiiiic e 7-23
EZ-USB Isochronous Transfers ... 8-1
8.1 (oo [o110 o IS 8-1
8.1.1 INITANZALION ..eevvie e e e 8-2
8.2 ISOChronous IN TranSTersoooouviii e 8-2
8.2.1 IN Data Transferscooeiiiiiiiee e 8-3
8.3 Isochronous OUT TranSfersooieiiiiiiiii e 8-3
8.3.1 INITANZALION ..oevvie e e 8-4
8.3.2 OUT Data Transfercoov e 8-4
8.4 Setting 1ISOChronous FIFO SiZEScccooeviiiiiiiie e 8-5
8.5 Isochronous Transfer SPEEdeuveiiiiiiiiiiiiiiii e 8-8
8.6 FaSt TrANSTEIS .oueiieiei e e e e e e e 8-9
8.6.1 FaStWIIIES ..uviiici e e 8-10
8.6.2 FaSt REAAScvviiie i e 8-11
8.7 Fast Transfer TIMINGooooiioiiii e e 8-11
8.7.1 Fast Write WavefOormsooviiiiiiiiiiicneeeeee e 8-12
8.7.2 Fast Read Waveformscccooiiii i 8-13
8.8 Fast Transfer SPEEA ..o 8-14
8.8.1 Disable SO ..o 8-15
8.9 Other ISOChron0US REQISIEIScuvuiuiiiiiiiieeee e 8-15
8.9.1 ZeroByte COUNtBILSuuvuviiiiiiiieeeeeieieee e 8-16
8.10 ISO IN Response With NO Datacccoeeveiiiiiiiiiiieiieiee e 8-17
8.11 Using the ISOChronous FIFOScocoiiiiiiiiiiiiiieieeeeeie e 8-17
EZ-USB INEITUPLSeereiiiee e e 9-1
9.1 oo [o110 o IO 9-1

Table of Contents

EZ-USB TRM v1.9

9.2 USB COre INEITUPLS .ottt e e eenenees 9-1

9.3 WaKeUP INTEITUPLeieiiieieieie ettt 9-2
9.4 USB SIgnaling INTEITUPLSvueiiiiiieieieieee et 9-4
9.5 SUTOK, SUDAV INTEITUPLES ...t 9-8
9.6 SOF INTEITUPL ..ot s 9-9
9.7 SUSPENd INTEITUPL ... 9-9
9.8 USB RESET INTEITUPL ..o 9-9
9.9 Bulk ENdpoint INTEITUPLSeeveiiieieiieeii e 9-9
9.10 USB AULOVECEOISuuiiiieiiii e eeeee ettt e e e e e e ee et e e e e enan e e 9-10
9.11 AULOVECIOr COING ..ottt 9-11
0.12 PCINLEITUPL oottt et ettt ettt sttt saaeente e e e eraessaeenneenne e 9-13
9.13 In Bulk NAK Interrupt - (AN2122/AN2126 0Nly) ...oovvvvvieieiiiiiiiinanann, 9-13
9.14 PC STOP Complete Interrupt - (AN2122/AN2126 only) 9-15
10 EZ-USB RESELS ... 10-1
(0 0 A {1 o o [F o 1o) I 10-1
10.2 EZ-USB Power-On Reset (POR)uuiiiiiiiiiiiiiiiiiieee e 10-1
10.3 Releasing the 8051 RESELccccuuviiiiiiiiiiii it 10-3
10.3.1 RAMDOWNIOAdcoooieieiieieee e 10-4
10.3.2 EEPROM LOAAouiiiiiiiiiiiieeeeee e 10-4
10.3.3 EXternal ROMcooiiiiiiiiiee e s 10-4
10.4 8051 ReSet EffECtS ..coiiieiieieieeeee e 10-4
10.5 USB BUS RESEL ... 10-5
10.6 EZ-USB DISCONNECTuuutuiniiiaiiiiiieeeeee e ee ettt es e s e e e e e e eeeeeeeeseaenees 10-7
10.7 RESEL SUMMAIY ...ttt e et e e e e e e e e e eean e e e aeeeeens 10-8
11 EZ-USB Power Managementcccoviiiiiiiiiiiiiie e ee e 11-1
150 A [1 o o [1 o 1o) I 11-1
11.2 SUSPENA .ottt ettt e e e e e e e 11-2
11.3 RESUIME .ottt et e e e ettt e e e ee e tb e e e e eeaeann e e aeeernns 11-3
11.4 RemOte WAKEUP ..oooviiiiiieie et 11-4
12 EZ-USB REQISIEIS ..couniiiiii ettt e a e 12-1
1022 A [1 o o [1 o 1o] I 12-1
12.2 Bulk Data BUfEI'Soooiiiiiiiiiiiiee e e 12-3
12.3 1S0chronous Data FIFOScooooiiiiiiiiiiii i 12-4
12.4 1SOChronous Byte COUNTScooeiiiiiiiiii e 12-6
12.5 CPU REQISIEIS ..ot e ee et e e e e e e e e e e e eeee e 12-8
12.6 POrt ConfigQUrationoouuiuemiimiiian et e e e e e e e e 12-9
12.7 Input-Output POrt REQISTEIScuuiiiieiiieeee e 12-11

EZ-USB TRM v1.9 Table of Contents Y

12.8 230-Kbaud UART Operation - AN2122, AN2126cccvvvverrrenrnnnnns 12-14

12.9 Isochronous Control/Status RegiSterscooooiiiiiiiiiiiiiiiiiieeeeeeeeenen 12-14
12.10 PC REQISIEIS ...oeiiiiieiiiiieeiie et eite ettt et e snte e srbe e s stae e neeenneee s 12-16
12,11 INTEITUPLS ..ttt e e e e e e e ee e eeannnnnanas 12-19
12.12 Endpoint 0 Control and Status RegiStersccocooveveiiiiiiiiiiieiieeeeeen 12-29
12.13 Endpoint 1-7 Control and Status RegiSterscccccvveeieiiiiiieieenennnnnns 12-31
12.14 GIlobal USB REQISIEISouiiiiiiiiiiiieieee ettt 12-37
12.15 FaSt TrANSTEIS ..oueeiiiiiiiiie e ee e 12-46
12.16 SETUP DALAuvveiiieeiiiiiieie ettt et ee e 12-49
12.17 1S0Chronous FIFO SiZEScooiiiiiiiiiie e 12-50
13 EZ-USB AC/DC Parametersccccciiieiiieeeiiiiineeeeeeeiiinnaneeeeeenes 13-1
13.0.1 Absolute Maximum RatiNgScccccvimimiiiiiiiiee e 13-1
13.0.2 Operating ConditioNSccooiiiiiiiiiieieie e 13-1
13.0.3 DC CharacteriStiCScccoririiiiiiiiiiinieie et 13-1
13.1 Electrical CharacteriStiCSeueeieiiiiiiiiiiiiiiiiiii e 13-1
13.1.1 AC Electrical CharacteristiCScccvrririiriiiiiieieieeeeienenenns 13-2
13.1.2 General Memory TIMINGcooviiiiiiiiiiiiiiieiee e 13-2
13.1.3 Program Memory Readccccceeiiiiiiiiiiiiiiiii e 13-2
13.1.4 Data Memory REAUuuuviiiiiiiiiieieieeeeeeee e 13-2
13.1.5 Data Memory WLcooieiiiiieieeiiie e e 13-3
13.1.6 Fast Data WLueuiiiiiiiiiiiieie e 13-3
13.1.7 FastData REAdcccooviiiiiiiiiiiiiiiee e 13-3
14 EZ-USB PacKagingcccuvuiiiiiiiiiiiiineeee s ee e ee e eeeeeees 14-1
14.1 44-Pin PQFP PACKAGEevviiiiiiiiiiiieiiee et 14-1
14.2 80-PiN PQFP PACKAGEovveiiiiiiiiiiiieieie ettt 14-3
14.3 48-Pin TQFP PACKAQEoevvvriiiiiiiiiii ettt 14-5

Vi Table of Contents EZ-USB TRM v1.9

Figure 1-1.
Figure 1-2.
Figure 1-3.
Figure 1-4.
Figure 1-5.
Figure 1-6.
Figure 1-7.
Figure 1-8.
Figure 1-9.

Figure 1-10.
Figure 1-11.

Figure 1-12.
Figure 1-13.

Figure 2-1.
Figure 3-1.
Figure 3-2.
Figure 3-3.
Figure 3-4.
Figure 3-5.
Figure 3-6.
Figure 3-7.
Figure 4-1.
Figure 4-2.
Figure 4-3.
Figure 4-4.
Figure 4-5.
Figure 4-6.
Figure 4-7.
Figure 5-1.
Figure 5-2.
Figure 5-3.
Figure 6-1.
Figure 6-2.
Figure 6-3.
Figure 6-4.
Figure 6-5.
Figure 6-6.
Figure 6-7.
Figure 6-8.

EZ-USB TRM v1.9

Figures

AN2131S (44 pin) Simplified Block Diagramcccccceeeeriiiiieeieieeniinieeeeenn 1-2
AN2131Q (80 pin) Simplified BIOCK Diagramccccvveeeeeriniiienieeeenniinie 1-3

O Y 3 o Tod (=] TR 1-4
Two Bulk Transfers, IN and OQUT ...t 1-7
AN INtErTUPt TrANSTEI ..o et 1-7
AN ISOCHIONOUS TrANSTEE ...cieeiiiie e ettt e e e e e e s aans 1-8
YA OT0] o) i (o] I I = 10153 (=] (RPN 1-8
WHAt the SIE DOEBScen ittt et e e et e e et s s e et e e se it e e et s eeeeaaeans 1-10
80-pin PQFP Package (AN2131Q) ...ieviiiiiiiriiiiieeee et ee et 1-18

44-pin PQFP Package with Port B (AN2121S, AN2122S, and AN2131S)1-19
44-pin Package with Data Bus (AN2125S, AN2126S, AN2135S, and

ANZLBB) ittt e b e e bbb e e e s 1-20
48-pin TQFP Package (AN2L122T) ..ouviiiiiieiiaiiieie ettt 1-21
48-pin TQFP Package (AN2L126T) ...ccuvueiiiieeiiiiiiiie et 1-22
8051 REQISTEIS ...ttt ettt ettt et e b 2-3
EZ-USB 8-KB Memory Map - Addresses are in Hexadecimal 3-1
EZ-USB 4-KB Memory Map - Addresses are in Hexadecimal 3-1
Unused Bulk Endpoint Biefs (Shaded) Used as Data Memory 3-3
EZ-USB Memory Map With EA=O ... 3-4
EZ-USB Memory Map With EA=L ... 3-6
8-KB ROM, 2-KB RAM VEISIONccciitiiiiiiiiiiieaiiieeeestieie st 3-7
32-KB ROM, 4-KB RAM VEISION ...cciiuuiiiiiiiiiieiitie ettt 3-8
EZ-USB INPUt/OULPUL PIN . 4-2
Alternate Function is an OUTPUT ..ot 4-4
Alternate FUuNction is an INPUT ... 4-4
Registers Associated with PORTS A, B, and C ..o 4-5
General 12C TranSTeIooi i 4-6
General FC TranSTEIoiiiii it 4-7
FC REQISLEIS ..tttk e e ettt e e e e et e e e e e s ane 4-8
USB Control and Status REGISTENuviiieiiiiiiiii e 5-11
DISCONNECE PIN LOGIC ...vuveiiieiieiitieie ettt ettt e e 5-12
Typical Disconnect Circuit (DISCOE=1)coooiiiiiiiiiiiiiiiiee e 5-12
Two BULK Transfers, IN and OUTooueiiiiiiiiie e et ee et ee e 6-1
Registers Associated with Bulk ENdpointsceevviiiiiiiiiiine e 6-3
Anatomy Of @ BUIK IN TranSfer ... 6-4
Anatomy of a BUlk OUT Transfercccceviiiiiiiiiiie e 6-7
Bulk Endpoint Toggle CONtrolc..oeveiioiiiiiiiii e 6-11
Example Code for a Simple (Polled) BULK Transferccccccoeviiiiiieeeninnnns 6-14
INterrupt JUMP TaDIE ..o 6-18
INT2 INEEITUPT VECTON ..ot e 6-19

List of Figures vii

Figure 6-9.

Figure 6-10.
Figure 6-11.
Figure 6-12.
Figure 6-13.
Figure 6-14.

Figure 7-1.
Figure 7-2.
Figure 7-3.
Figure 7-4.
Figure 7-5.
Figure 8-1.
Figure 8-2.
Figure 8-3.
Figure 8-4.
Figure 8-5.
Figure 8-6.
Figure 8-7.
Figure 8-8.
Figure 8-9.

Figure 8-10.
Figure 8-11.
Figure 8-12.
Figure 8-13.

Figure 8-14.
Figure 8-15.

Figure 9-1.
Figure 9-2.
Figure 9-3.
Figure 9-4.
Figure 9-5.
Figure 9-6.
Figure 9-7.
Figure 9-8.
Figure 9-9.

Figure 9-10.
Figure 9-11.
Figure 9-12.
Figure 9-13.
Figure 10-1.
Figure 11-1.
Figure 11-2.
Figure 11-3.
Figure 11-4.

viii

Interrupt Service RoutifiSR) for Erdpoint 6-OUTccvvvevieiiiiiiiiieeeee 6-19
Background Program Transfers Endpoint 6-OUT Data to Endpoint 6-IN 6-20
INItIAliZatioN ROULINEooeeieieiie e e e e e e e e e ea e 6-21
AULOPOINTET REGISTEIS ...oiiiiiiiiiiiie ittt e e 6-23
Use Of the AULOPOINTET ..o 6-24
8051 Code to Transfer External Data to a Bulk IN Bufferccccoovnnnee. 6-25
A USB Control Transfer (This One Has a Data Stage)cccccccevviiiiireeeenennne 7-2
The Two Interrupts Associated with EPO CONTROL Transfersccccccceee.. 7-3
Registers Associated with EPO Control Transfersccoocoeiiiiiiiiiiiiieieieieeen, 7-4
Data Flow for a Get_StatusS REQUESTcoiiiiiiiiiiiieiiieie e 7-7
Using the Setup Data Pointer (SUDPTR) for Get_Descriptor Requests 7-13
EZ-USB Isochronous ENdpoints 8-15ccooiuiiiiieiiiiiiiiiiiie e 8-1
Isochronous IN ENdpoint REQISLEIScoocvuiiiiiiiiiiiiiie e 8-2
ISOChroNOUS OUT REQISIEISeiiiiiiiiiiiiiit ettt 8-4
FIFO Start Address FOIMALuuuiiiiiiiiieiie e ie e e 8-5
Assembler Translates FIFO Sizes to ADAreSSESoevvviiiiiiiiviiiieiiiiiieieee e 8-7
8051 Code to Transfer Data to an Isochronous FIFO (INSBDATA)cccueee... 8-8
8051 MOVX INSIIUCLIONS ...ttt ee e e et e e e eeaeeaeeeae e e s e e e s e e e an e e e e 8-9
Fast Transfer, EZ-USB to OutSide MEMOIYccccocuuiiiiiieriiiiiiieee e 8-10
Fast Transfer, Outside Memory t0 EZ-USBccccccoviiiiiiiiiiiiiiieeeeee e 8-11
The FASTXFR Register Controls FRD# and FWR# Strobesccccceeee.. 8-11
Fast WIITE TIMING ...ttt e e 8-12
Fast Read TiMING ...cooiiieiiieie ettt ee e 8-13
8051 Code to Transfer 640 Bytes of External Data to an Isochronous
IN FIFO ottt e e e e e et e e e e e e s et e e e e e e e aan e e e e ee e 8-14
[SOCTL REQISTEI ..ttt et e e e e e 8-15
ZBCOUT REQISIEI .iiiiiiiiitie ittt e st e s 8-16
EZ-USB WaKeup INEITUPL ..ottt ettt 9-2
USB INTEITUPLS .oeeiiieitie et et e et e e e e e e e ee e nnannas 9-4
The Order of Clearing Interrupt Requests is Importantcccccoovviiiveeeenennne 9-6
EZ-USB INterrupt REGISIErScooiiiiiiiiiiie et 9-7
SUTOK and SUDAV INTEITUPLESeeeeiiieieeiiitiee ettt 9-8
A Start Of Frame (SOF) PACKELccooiiiiiiiiiiiiiei et 9-9
The Autovector Mechanism in ACHONuuuiiiiiiiiiiiiriririe e 9-12
fC Interrupt Enable Bits and REJISIENSc.coceeveeueieieeeeeeeeee et 9-13
IN Bulk NAK Interrupt Request REJISENcuuveiiiiiiiiiiiiieieeeeeeee e 9-14
IN Bulk NAK Interrupt Enable RegIStercooviveviieiiiiei e 9-14
LR (oo Lo L= o) 1= TR 9-15
C Control and Status REGISIETeceveeeeiereeeeeeeeeeeeeeeee e er e eeeeen, 9-15
FC DALA ..eeceeee ettt 9-15
EZ-USB RESEIS ..ottt et et e e e e e ean s 10-1
Suspend-Resume CONLIOlooovviiiiiii e 11-1
EZ-USB SUSPENU SEUUEINCEoutiiiiiiiiiiiiiiiiieieieiee e ee e eeaaeaaaeaaaaaaaaaaaaaaaaaaeananaaaaans 11-2
EZ-USB RESUME SEUUENCE ...cceeieiiieeiiiii et ettt et e eee e e e e e e e ren s 11-3
USB Control and Status ReQISLErcooiiiiii i 11-4

List of Figures EZ-USB TRM v1.9

Figure 12-1.

Figure 12-2.

Figure 12-3.

Figure 12-4.

Figure 12-5.

Figure 12-6.

Figure 12-7.

Figure 12-8.

Figure 12-9.

Figure 12-10.
Figure 12-11.
Figure 12-12.
Figure 12-13.
Figure 12-14.
Figure 12-15.
Figure 12-16.
Figure 12-17.
Figure 12-18.
Figure 12-19.
Figure 12-20.
Figure 12-21.
Figure 12-22.
Figure 12-23.
Figure 12-24.
Figure 12-25.
Figure 12-26.
Figure 12-27.
Figure 12-28.
Figure 12-29.
Figure 12-30.
Figure 12-31.
Figure 12-32.
Figure 12-33.
Figure 12-34.
Figure 12-35.
Figure 12-36.
Figure 12-37.
Figure 12-38.
Figure 12-39.
Figure 12-40.
Figure 12-41.
Figure 13-1.

Figure 13-2.

Figure 13-3.

Figure 13-4.

EZ-USB TRM v1.9

Register Description FOIMALoooiiiiiiiiiie i 12-2
Bulk Data BUFfEIS ... 12-3
ISOCHrONOUS Data FIFOSooiiiiiiiiiiiiie et 12-4
ISOCHIONOUS BYIE COUNLSeiiiiiiiiiiiiiie ettt 12-6
CPU Control and Status REQISTENuuiiiieiiiiiiiiie e 12-8
IO Port Configuration REGISIEISccoiiiiiiiiiiiiiee it 12-9
Output Port Configuration REQISIErSceuviiiiiiiiiiiiiie e 12-11
PINSN REQISIEIS ...ttt 12-12
Output Enable REJISIErSuoiiiiiiiiiiie e 12-13
230-Kbaud UART Operation REQISErcuiiiiiiiiiiiiieieeniiiiieie e 12-14
Isochronous OUT Endpoint Error REQISIErc.oovciiiiiiiiiiiiiieieeee e 12-14
ISOChronous CoNntrol REGISTETueiiiiiiiiiiieiee e 12-15
Zero Byte COUNt REQGISIETooiiiiiiiiii et 12-15
AC TranSfer REGISIETSc..cveeeieeeeeeeie ettt eae e 12-16
AC MOAE REUISTETcvieeieieteee ettt et ea s aneas 12-18
INterrupt VECtOr REQISIETcvviiiiiiiiie e 12-19
IN/OUT Interrupt Request (IRQ) REQISIEIS ...ocvvviiviiiiiieieeeieee e 12-20
USB Interrupt Request (IRQ) ReQIStErscoooieiiiiiiiieiiee e 12-21
IN/OUT Interrupt Enable REQISTErScccvuiiiiiieiiiiiiiieie e 12-23
USB Interrupt Enable RegISTerc.uveiiiiiiiiiiiii e 12-24
Breakpoint and AUtOVECIOr REJISTENueiiiiiiiiiiiiiie e 12-26
IN Bulk NAK Interrupt Request REQISteroeviieriiiiiiiiiei e 12-27
IN Bulk NAK Interrupt Enable Registercccoooiiiiiieiiiiiiiiiieeieeeen 12-27
IN/OUT Interrupt Enable REQISTErScccvvviiiiieiiiiiiieie e 12-28
Port Configuration REQISIEISc.oiiiiiiiiiieiie e 12-29
IN Control and Status REQISTEISc.cuuviiiieieiiiiii et 12-32
IN Byte COUNE REQISTEISoeeiiiiiiiiiie ittt 12-34
OUT Control and Status REQISLEISccoioieiiiiiiiiiiiieiiiie e e e e e e e 12-35
OUT Byte COUNt REQISTEISuviiiiiiiiiiiiiiie st 12-36
Setup Data Pointer High/LOW REQISTErSccoiiiiiiiiiiiiiiiiiiiee e 12-37
USB Control and Status ReQISLEIScoooviiiiiiiiiiieiee e ee e 12-38
Data Toggle Control REGISIENuuiiiiiiiiiiiiie e 12-40
USB Frame Count High/LOW REQISIEIScccoiiiiiiiiiiiiiiiiiieeee e 12-41
Function Address REQISIENovvviiiiiieieieee e 12-42
USB Endpoint Pairing REQISIETuviiiiiiiiiiiie e 12-43
IN/OUT Valid BitS REQISTEIuviiiieiieiiiiiie ittt 12-44
Isochronous IN/OUT Endpoint Valid Bits Registercccccooovvviiiveirinnninnnn 12-45
Fast Transfer Control REQISIENovviveiiiiiei e 12-46
AULO POINtEN REJISIEIS .oviiiiiiiieeie e e 12-48
SETUP Data BUFfErccoeiiiiiieei e 12-49
SETUP Data BUFfEIccooiiiii e 12-50
External Memory TiMINGeeeei e ae e e e e e s es e seenenees 13-4
Program Memory Read TiMINGcueueeiiiiiriririieieieie e ee e seeenees 13-4
Data Memory Read TiMINGuuueuiiiiiiiiiiiieir et e 13-5
Data Memory WIte TiMINGoooveviieieieieieieiee s ae e 13-5

List of Figures ix

Figure 13-5.
Figure 13-6.
Figure 13-7.
Figure 13-8.
Figure 13-9.

Figure 13-10.
Figure 13-11.
Figure 13-12.
Figure 13-13.

Figure 14-1.
Figure 14-2.
Figure 14-3.
Figure 14-4.
Figure 14-5.
Figure 14-6.
Figure 14-7.
Figure 14-8.
Figure 14-9.

Fast Transfer Mode BIOCK DIiagramccoooiuiiiiieiniiiieiiien e 13-6
Fast Transfer Read Timing [Mode 00]cooiiiiiiiiinoriiiie e 13-7
Fast Transfer Write Timing [MOde 00]c.cooiiiimiimiieineniiiee e 13-7

Fast Transfer Read Timing [Mode O1]ccooiiiiiiiiiiiioiiiiee e 13-8
Fast Transfer Write Timing [MODE O1]cccoiiiiiiiiiiiriiiiiieee e 13-8

Fast Transfer Read Timing [Mode 10]ccoooiiiiiiiiiiiiiiiie e 13-9
Fast Transfer Write Timing [Mode 10]c.oooiiiiiiiiiiiiiiieee e 13-9

Fast Transfer Read Timing [Mode 11]ccooviiiiiiiiiiiiiiieee e 13-10
Fast Transfer Write Timing [Mode 11]coooiiiiiiiiiiiiiiiiiee e 13-10

44-Pin PQFP Package (TOP VIEW)ooiiiiiiiiiiiiie et 14-1
44-Pin PQFP Package (Side VIEW)cuiiiiiiiiiiiiiiie e 14-1
44-Pin PQFP Package (Detail VIEW)ccooiiiiiiiiiiiioiiiiee e 14-2
80-Pin PQFP Package (TOP VIEW)cooiiiiiiiiiiiie e 14-3
80-Pin PQFP Package (Side VIEW)ccoiiiiiiiiieiiiiiiiiiee et 14-3
80-Pin PQFP Package (Detail VIEW)coooiuiiiiieiiiiiiiieeeee e 14-4
48-Pin TQFP Package (Side VIEW)coiiiiiiiiiieiiiiiiie et 14-5
48-Pin TQFP Package (TOP VIEW)oviiiiiiiiiiiie et 14-5
48-Pin TQFP Package (Detail VIEW)cccviiiiiieiiiiiiie e 14-6

List of Figures EZ-USB TRM v1.9

Table 1-1.
Table 1-2.
Table 1-3.
Table 2-1.
Table 2-2.
Table 4-1.
Table 4-2.
Table 4-3.
Table 5-1.
Table 5-2.
Table 5-3.
Table 5-4.
Table 5-5.
Table 5-6.
Table 5-7.
Table 5-8.
Table 5-9.
Table 5-10.
Table 5-11.
Table 5-12.
Table 5-13.
Table 5-14.
Table 5-14.
Table 5-15.

Table 5-16.
Table 5-17.
Table 5-18.
Table 5-19.

Table 6-1.
Table 6-2.
Table 6-3.
Table 6-4.
Table 6-5.

EZ-USB TRM v1.9

Tables

USB PID S .. ittt ettt et e e enaans 1-4
EZ-USB Series 2100 FamIlYcoooiiiiiiiiieiaiie et 1-16
EZ-USB Series 2100 Pinouts by Pin FUNCHIONcooiiiiiiiiiiieiiiiiee e 1-23
EZ-USB INTEITUPLS ...ttt e e 2-4
Added RegiSters @nd BitS...........ooiiiiiiiiei it 2-6
IO Pin Functions for PORTXCFG=0 and PORTXCFG=1cccccvrrrieereniinnne. 4-3
Strap Boot EEPROM Address Lines to These Valuesccccccvvevvviviverennnnnn. 4-13
Results Of POWEI-0ON 12C TEST.....uiiiiiiiiiiiii ettt 4-14
EZ-USB Default ENAPOINTSccoiiiiiiiiiiiieie it 5-2
How the EZ-USB Core Handles EPO Requests When ReNum=0 5-4
Firmware DOWNIOAMcoeiiiiiiiiieiiiie et e e 5-5
FIrmware UPIOadoooiiiiiiiie e 5-6
EZ-USB Core Action at POWEr-UpPvviiiiiiiiiiiiieeee e 5-7
EZ-USB Device Characteristics, No Serial EEPROM.........cccoovviiiiiiiiiiiieeiiees 5-8
EEPROM Data Format for “BO” LOAMcccovuviiiieieiiiiiieeee e 5-9
EEPROM Data Format for “B2” LOAdccccuviiiieiiiiiiiieeee e 5-10
USB Default Device DESCIIPLONcc.uviiiiiieee et 5-13
USB Default Configuration DESCHPLONcciiiiiiiiiiiieieiiriee e 5-14
USB Default Interface 0, Alternate Setting O DesCriptorcevveriiiiereeeenn. 5-14
USB Default Interface 0, Alternate Setting 1 DesCriptorceveeriiiiiereenenn. 5-15
USB Default Interface 0, Alternate Setting 1, Interrupt Endpoint Descriptor.. 5-15
USB Default Interface 0, Alternate Setting 1, Bulk Endpoint Descriptors 5-16
USB Default Interface 0, Alternate Setting 1, Bulk Endpoint Descriptors 5-17
USB Default Interface 0, Alternate Setting 1, Isochronous Endpoint
D= g o] (o] =SSR 5-18
USB Default Interface 0, Alternate Setting 2 DesCriptorcevveriiiiereeeenn. 5-19
USB Default Interface 0, Alternate Setting 1, Interrupt Endpoint Descriptor.. 5-19
USB Default Interface 0, Alternate Setting 2, Bulk Endpoint Descriptors 5-20
USB Default Interface 0, Alternate Setting 2, Isochronous Endpoint
D= g o] (o] =PSRRI 5-21
EZ-USB Bulk, Control, and Interrupt ENdpointsccccccveviviiiiiiiieeieiieeeeeeeenn. 6-1
Endpoint Pairing Bits (in the USB PAIR ReQISter)ccooviiiiiieiiiiiiiiiiiieeeenne 6-8
EZ-USB Endpoint 0-7 Bf@r ADAreSSES........cooviuviiiiiieeriiiieii e 6-10
BO51 INTZ2 INTEITUPT VECTOToiiieieii ettt 6-16
Byte Inserted by EZ-USB Core at Location 0x45 if AVEN=1 6-16

List of Tables Xi

Table 7-1.
Table 7-2.
Table 7-3.
Table 7-4.
Table 7-5.
Table 7-6.
Table 7-7.
Table 7-8.
Table 7-9.

Table 7-10.
Table 7-11.
Table 7-12.
Table 7-13.
Table 7-14.
Table 7-15.
Table 7-16.
Table 7-17.
Table 7-18.
Table 7-19.
Table 7-20.
Table 7-21.
Table 7-22.

Table 8-1.
Table 8-2.
Table 9-1.
Table 9-2.
Table 9-3.

Table 10-1.
Table 10-2.
Table 10-3.
Table 10-4.
Table 12-1.
Table 12-2.
Table 12-3.
Table 12-4.
Table 12-5.
Table 12-6.
Table 13-1.
Table 13-2.

Xii

The Eight Bytes in @ USB SETUP Packetc.cccccoiiiiiiiiiiiiiiiiiirree e 7-5
How the 8051 Handles USB Device Requests (RENUM=1).........ccccvvveereriinnnnn 7-6
Get Status-Device (Remote Wakeup and Self-Poweatgd B........................ 7-8

Get Status-Endpoint (Stall BitS)...........uvviiiiiiiiiiiiiieee e 7-8
Get StatuS-INTEITACE.iie e e 7-10
Set Feature-Device (Set Remote Wakeup Bit)cccceveviiiiiiiiiiiin e 7-10
Set Feature-Endpoint (Stall)...........oooioiiiiiiiiiei e 7-11
Clear Feature-Device (Clear Remote Wakeup Bit)cocovvieiiiiiiiiiiiieinens 7-12
Clear Feature-Endpoint (Clear Stall)ccooiiiiiiiiiiiceer e 7-12
GEt DESCHPIOr-DEVICEvuviiiiiiiiiieiiiie ettt 7-14
Get Descriptor-ConfigUIatioNooouuririieer et 7-15
Gt DESCHPLON-SIING .. .eveeeeeiiieie ettt e e e 7-16
St DESCIIPLON-DEVICEcoiiiiiie ittt 7-16
Set Descriptor-ConfIQUIAtioNoooiuriiiie e 7-17
St DESCIIPLON-SIING . .. eteeeeeeiiiiiiie ittt e e e et ee e e e 7-17
Set CONFIGUIALIONceieiiitiiie e 7-19
Gt CONFIGUIALION ... 7-19
Set Interface (Actlg Set Alternate Setting AS for Interface IF).................. 7-20

Get Interface (Actually, Get Alternate Setting ASifberface IF)................. 7-21

SYNC FIAMIE ..ottt e e et e e ee e s 7-22
Firmware DOWNIOADcooiiuiiiiiiie i 7-23
FIrmware UPIOadoouuvieiiiie it 7-23
Isochronous Endpoint FIFO Starting Address RegiSterscccovovvviieeeeninnnnen 8-6
Addresses for RD# and WR# vs. ISODISAB Dit.........cccooiiiiiieiiiiieenee e, 8-15
EZ-USB INTEITUPLS .. .eii ettt e e e e e e e 9-1
8051 JUMP INSTIUCTION ...eiieieiiiiiieete ettt e e e e 9-10
A Typical USB Jump Table ..o 9-11
EZ-USB States After Power-On Reset (POR)cccuvveviiiiiiiiiiiie e 10-2
EZ-USB States After a USB BUS RESet........ccooviiiiiiiiiii e 10-6
Effects of an EZ-USB Disconnect and Re-CoNNectcccceveveriiiiiiiiiee e 10-7
Effects of Various EZ-USB Resets (“U” Means ‘dffiected”)....................... 10-8

Bulk Endpoint Buffer Memory AdAreSSES........ccuuvvviiieriniiiiiieee e 12-3
Isochronous Endpoint FIFO Register AddreSSesSc.coviiviiiiiieiriiiiiiieeee e 12-4
Isochronous Endpoint Byte Count Register Addressescooeevvvevivevieeieieenns 12-6
1O Pin Alternate FUNCLIONSoiiiiiiiiiiiie ettt 12-10
Control and Status Register Addresses for Endpoints 0-7..........cccccveeeenninnnes 12-31
Isochronous FIFO Start Address RegIStErS..........uiviiieiiiiriiiieeeeiiiiieee e 12-51
DC CRArACLEMICSceeieirieiie ettt ettt e e e s 13-1
General Memory TIMINGooveeeeeieie e 13-2

List of Tables EZ-USB TRM v1.9

Table 13-3. Program Memory REAA..........cuoiiiiiiiiiiiie e 13-2

Table 13-4. Data MemOry REAMc.uuiiiiiie ettt 13-2
Table 13-5. Data MEMOTY WIIEEceoiiieieiie ettt 13-3

Table 13-6. FaSt DAtA WIITE ...t e e 13-3
Table 13-7. Fast Data REATueuieiiiii ittt 13-3

EZ-USB TRM v1.9 List of Tables Xiii

Xiv List of Tables EZ-USB TRM v1.9

1 Introducing EZ-USB

1.1

Introduction

Like a well designed automobile or appliance, a USB peripheral’s outward simplicity
hides internal complexity. There’s a lot going on “under the hood” of a USB device,
which gives the user a new level of convenience. For example:

A USB device can be plugged in anytime, even when the PC is turned on.

When the PC detects that a USB device has been plugged in, it automatically inter-
rogates the device to learn its capabilities and requirements. From this informa-
tion, the PC automatically loads the device’s driver into the operating system.
When the device is unplugged, the operating system automatically logs it off and
unloads its driver.

USB devices do not use DIP switches, jumpers, or configuration programs. There
is never an IRQ, DMA, MEMORY, or IO conflict with a USB device.

USB expansion hubs make the bus available to dozens of devices.

USB is fast enough for printers, CD-quality audio, and scanners.

USB is defined in th&Jniversal Serial Bus Specification Version titp://usb.org), a
268-page document that describes all aspects of a USB device in elaborate detail. This
EZ-USB Technical Reference Manual describes the EZ-USB chip along with USB topics
that should provide help in understanding the Specification.

The Cypress Semiconductor EZ-USB is a compact integrated circuit that provides a
highly integrated solution for a USB peripheral device. Three key EZ-USB features are:

The EZ-USB family provides aoft(RAM-based) solution that allows unlimited
configuration and upgrades.

The EZ-USB family delivers full USB throughput. Designs that use EZ-USB are
not limited by number of endpoints, buffer sizes, or transfer speeds.

The EZ-USB family does much of the USB housekeeping in the EZ-USB core,
simplifying code and accelerating the USB learning curve.

EZ-USB TRM v1.9 Chapter 1. Introducing EZ-USB Page 1-1

This chapter introduces some key USB concepts and terminology that should make read-
ing the rest of this Technical Reference Manual easier.

1.2 EZ-USB Block Diagrams

+5V
\
o Serial [oVeS—» sm Program& |4 |
> Interface Interface Data 0 Ports
Engine 4 bytes — RAM
(SIE)
o General
USB uUsB _ Purpose
Connector Transceiver Microprocessor

Figure 1-1. AN2131S (44 pin) Simplified Block Diagram

The Cypress Semiconductor EZ-USB chip packs the intelligence required by a USB
peripheral interface into a compact integrated circuit. As Figure 1-1 illustrates, an inte-
grated USB transceiver connects to the USB bus pins D+ and D-. A Serial Interface
Engine (SIE) decodes and encodes the serial data and performs error correction, bit stuff-
ing, and other signaling-level details required by USB, and ultimately transfers data bytes
to and from the USB interface.

The internal microprocessor is enhanced 8051 with fast execution time and added fea-
tures. It uses internal RAM for program and data storage, making the EZ-USB family a
softsolution. The USB host downloads 8051 program code and device personality into
RAM over the USB bus, and then the EZ-USB chip re-connects as the custom device as
defined by the loaded code.

The EZ-USB family uses an enhanced SIE/USB interface (called the “USB Core”) which
has the intelligence to function as a full USB device even before the 8051. The enhanced
core simplifies 8051 code by implementing much of the USB protocol itself.

EZ-USB chips operate at 3.3V. This simplifies the design of bus-powered USB devices,
since the 5V power available in the USB connector (which the USB specification allows
to be as low as 4.4V) can drive a 3.3V regulator to deliver clean isolated power to the EZ-
USB chip.

Page 1-2 Chapter 1. Introducing EZ-USB EZ-USB TRM v1.9

+5V

D+ Serial [bvtes—» sg Program &
. Interface Interface Data 10 Ports
Engine ¢—bytes—] RAM
(SIE)
g General Address Bus | External
USB USB Purpose ! Memory,
i Microprocessor I FIFOS,
Connector Transceiver S E o

EZ-USB

Figure 1-2. AN2131Q (80 pin) Simplified Block Diagram

Figure 1-2 illustrates the An2131Q, an 80-pin version of the EZ-USB family. In addition
to the 24 10 pins, it contains a 16-bit address bus and an 8-bit data bus for external mem-
ory expansion.

A specialfast transfemode moves data directly between external logic and internal USB
FIFOs. The fast transfer mode, along with abundant endpoint resources, allows the EZ-
USB family to support transfer bandwidths beyond the maximum required dyriher-

sal Serial Bus Specification Version 1.1

1.3 The USB Specification

The Universal Serial Bus Specification Version islavailable on the Internet attp://
usb.org. Published in January 1998, the specification is the work of a founding commit-
tee of seven industry heavyweights: Compaq, DEC, IBM, Intel, Microsoft, NEC, and
Northern Telecom. This impressive list of implementers secures USB as the low to
medium speed PC connection method of the future.

A glance at the USB Specification makes it inmediately apparent that USB is not nearly
as simple as the customary serial or parallel port. The specification uses new terms like
“endpoint,” isochronous,” and “enumeration,” and finds new uses for old terms like “con-
figuration,” “interface,” and “interrupt.” Woven into the USB fabric is a software abstrac-

tion model that deals with things such as “pipes.” The specification also contains detail

about the connector types and wire colors.

EZ-USB TRM v1.9 Chapter 1. Introducing EZ-USB Page 1-3

1.4 Tokens and PIDs

In this manual, you will read statements like, “When the host sends an IN token...” or “The
device responds with an ACK.” What do these terms mean? A USB transaction consists
of data packets identified by special codes called Packet IDs or PIDs. A PID signifies
what kind of packet is being transmitted. There are four PID types, as shown in Table 1-1.

Table 1-1. USB PIDs

PID Type PID Name
Token Data | IN, OUT, SOF, SETUP, DATAO, DATAL
Handshake |ACK, NAK, STALL

Special PRE
D c D C
A|l E|l C

(0] A A
8 p|| N|| R ¢ Payload 2 é Y &l Payload 2 i
T g E g A Data 1 K T A Data 1 K

1 6 (0] 6
Token Packet Data Packet H/S Pkt Token Packet Data Packet H/S P

Figure 1-3. USB Packets

Figure 1-3 illustrates a USB transfer. Packistan OUT token, indicated by the OUT

PID. The OUT token signifies that data from the host is about to be transmitted over the
bus. Packekk contains data, as indicated by the DATAL PID. Padketa handshake
packet, sent by the device using the ACK (acknowledge) PID to signify to the host that the
device received the data error-free.

Continuing with Figure 1-3, a second transaction begins with another OUT tok&at-
lowed by more data, this time using the DATAO PID. Finally, the device again indicates
success by transmitting the ACK PID in a handshake pazket

Why two DATA PIDs, DATAO and DATA1? It's because the USB architects took error
correction very seriously. As mentioned previously, the ACK handshake is a signal to the
host that the peripheral received data without error (the CRC portion of the packet is used
to detect errors). But what if a handshake packet itself is garbled in transmission? To
detect this, each side, host and device maintantata togglebit, which is toggled

between data packet transfers. The state of this internal toggle bit is compared with the

Page 1-4 Chapter 1. Introducing EZ-USB EZ-USB TRM v1.9

PID that arrives with the data, either DATAO or DATA1. When sending data, the host or
device sends alternating DATAO-DATAL PIDs. By comparing the Data PID with the state
of the internal toggle bit, the host or device can detect a corrupted handshake packet.

SETUP tokens are unique to CONTROL transfers. They preface eight bytes of data from
which the peripheral decodes host Device Requests.

SOF tokens occur once per millisecond, denoting a {rfaBe
There are three handshake PIDs: ACK, NAK, and STALL.

e ACK means “success;” the data was received error-free.

* NAK means “busy, try again.” It's tempting to assume that NAK means “error,”
but it doesn’t. A USB device indicates an errormyt responding

* STALL means that something unforeseen went wrong (probably as a result of mis-
communication or lack of cooperation between the software and firmware writers).
A device sends the STALL handshake to indicate that it doesn’t understand a
device request, that something went wrong on the peripheral end, or that the host
tried to access a resource that isn’t there. It's like “halt,” but better, because USB
provides a way to recover from a stall.

A PRE (Preamble) PID precedes a low-speed (1.5 Mbps) USB transmission. The EZ-
USB family supports high-speed (12 Mbps) USB transfers only, so it ignores PRE packets
and the subsequent low-speed transfer.

1.5 Host is Master

This is a fundamental USB concept. There is exactly one master in a USB system: the
host computerUSB devices respond to host requedt#§SB devices cannot send informa-
tion between themselves, as they could if USB were a peer-to-peer topology.

Actually, there is one case where a USB device can initiate signaling without prompting
from the host. After being put into a low-power suspend mode by the host, a device can
signal a remote wakeup. But that’s the only way to “yank the host’s chain.” Everything
else happens because the host makes device requests and the device responds to them.

There’s an excellent reason for this host-centric model. The USB architects were keenly
mindful of cost, and the best way to make low-cost peripherals is to put most of the smarts

EZ-USB TRM v1.9 Chapter 1. Introducing EZ-USB Page 1-5

into the host side, the PC. If USB had been defined as peer-to-peer, every USB device
would have required more intelligence, raising cost.

Here are two important consequences of the “host is master” concept:

1.5.1 Receiving Data from the Host

To send data to a USB peripheral, the host issues an OUT token followed by the data. If
the peripheral has space for the data, and accepts it without error, it returns an ACK to the
host. Ifitis busy, it instead sends a NAK. If it finds an error, it sends nothing back. For
the latter two cases, the host re-sends the data at a later time.

1.5.2 Sending Data to the Host

A USB device never spontaneously sends data to the host. Nevertheless, in the EZ-USB
chip, there’s nothing to stop the 8051 from loading data for the host into an endpoint
buffer (Section 1.13, "EZ-USB Endpoints") aathmingit for transfer. But the data will sit

in the bufferuntil the host sends an IN token to that particular endpolfthe host never
sends the IN token, the data sits there indefinitely.

1.6 USB Direction

Once you accept that the host is the bus master, it's easy to remember USB direction: OUT
means from the host to the device, and IN means from the device to the host. EZ-USB
nomenclature uses this naming convention. For example, an endpoint that sends data to
the host is an IN endpoint. This can be confusing at first, because thes@d8#data by
loading an IN endpoint buffer, but keeping in mind that an 866tis IN to the host, it

makes sense.

1.7 Frame

The USB host provides a time base to all USB devices by transmitting a SOF (Start Of
Frame) packet every millisecond. The SOF packet includes an incrementing, 11-bit frame
count. The 8051 can read this frame count from two EZ-USB registers. SOF-time has
significance for isochronous endpoints; it’s the time thatgimg-pongingbuffers switch
places. The EZ-USB core provides the 8051 with an SOF interrupt request for servicing
isochronous endpoint data.

Page 1-6 Chapter 1. Introducing EZ-USB EZ-USB TRM v1.9

1.8 EZ-USB Transfer Types

USB defines four transfer types. These match the requirements of different data types
delivered over the bus. (Section 1.13, "EZ-USB Endpoints" explains how the EZ-USB
family supports the four transfer types.)

1.8.1 Bulk Transfers

D

A A o AllE|| C
Payload D|| N|| R

T © U

A Data K T D|| D|| C

1 R|| P|| 5

Token Packet Data Packet /S Pk Token Packet Data Packet /S Pk

Payload
Data

O o>

o> >0

°or 0310
EXSSETs
0>

I

[200> |
[vomo]

[vozm]

Figure 1-4. Two Bulk Transfers, IN and OUT

Bulk data isbursty traveling in packets of 8, 16, 32, or 64 bytes. Bulk data has guaranteed
accuracy, due to an automatic re-try mechanism for erroneous data. The host schedules
bulk packets when there is available bus time. Bulk transfers are typically used for printer,
scanner, or modem data. Bulk data has built-in flow control provided by handshake pack-
ets.

1.8.2 Interrupt Transfers

AllEllc o ¢
A R A
| || D|| N|| R T Payload c c
N|| D|| D|| C Data
R|| P|| 5 & L &
1 6
Token Packet Data Packet H/S Pk

Figure 1-5. An Interrupt Transfer

Interrupt data is like bulk data, but exists only for IN endpoints in the “Universal Serial
Bus Specification Version 1.1.” Interrupt data can have packet sizes of 1-64 bytes. Inter-
rupt endpoints have an associated polling interval that ensures that they pittidesl

(will receive an IN token) by the host on a regular basis.

EZ-USB TRM v1.9 Chapter 1. Introducing EZ-USB Page 1-7

1.8.3 Isochronous Transfers

Payload

|
N Data

Too>»
oL 0XTO

or»r-H>»O

vTozm
ga0O0xTVO

Token Packet Data Packet

Figure 1-6. An Isochronous Transfer

Isochronous data is time-critical and usedg$teamingdata like audio and video. Time

of delivery is the most important requirement for isochronous data. In every USB frame, a
certain amount of USB bandwidth is allocated to isochronous transfers. To lighten the
overhead, isochronous transfers have no handshake (ACK/NAK/STALL), and no retries.
Error detection is limited to a 16-bit CRC. Isochronous transfers do not use the data tog-
gle mechanism; isochronous data uses only the DATAO PID.

1.8.4 Control Transfers

(TSI D a M
Al E|l C
B A|| 8bytes || R A
T B g g T|| Setup || C (& SETUP
u All pata |1 K Stage
pl| R P|l5 A 5 g
\ Token Packet) Data Packet) \H/S Pkt
f 7D (
C
Al E|l C
1|/ of| N|| RI[[I2]] Payload Rl 1A DATA
N/ D Dl cf|| o Data I K Stage
LRIEPI 6 (optional)
\Token Packet Data Packet \H/S Pk
o AlLEl cll|l &l mIl| |
So| wr||l 4RI |4 STATUS
D|| D|| C
TR Pl s 'i“ é X Stage
Token Packet \Data Pkj (H/S Pk

Figure 1-7. A Control Transfer

Control transfers are used to configure and send commands to a device.nBssnn

critical, they employ the most extensive error checking USB offers. Control transfers are
delivered on dest efforbasis by the hosbgst effortis defined by a six-step process in
theUniversal Serial Bus Specification Version 1.1, “Section 5.5.4The host reserves a
part of each USB frame time for Control transfers.

Page 1-8 Chapter 1. Introducing EZ-USB EZ-USB TRM v1.9

Control transfers consist of two or three stages. The SETUP stage contains eight bytes of
USB CONTROL data. An optional DATA stage contains more data, if required. The
STATUS (orhandshakgpstage allows the device to indicate successful completion of a
control operation.

1.9 Enumeration

Your computer is ON. You plug in a USB device, and the Windawsirsor switches to

an hourglass, and then back to a cursor. And magically, your device is connected and its
Windowd] driver is loaded! Anyone who has installed a sound card into a PC and had to
configure countless jumpers, drivers, and 10/Interrupt/DMA settings knows that a USB
connection can be like a miracle. We've h#ardabout Plug and Play, but USB delivers

the real thing.

How does all this happen automatically? Inside every USB device is a table of ‘descrip-
tors’ that are the sum total of the device’s requirements and capabilities. When you plug
into USB, the host goes through a ‘sign-on’ sequence:

1. The host sends a “Get_Descriptor/Device” request to address zero (devices must
respond to address zero when first attached).

2. The device dutifully responds to this request by sending ID data back to the host
telling what it is.

3. The host sends the device a “Set_Address” request, which gives it a unique address
to distinguish it from the other devices connected to the bus.

4. The host sends more “Get_Descriptor” requests, asking more device information.
from this, it learns everything else about the device, like how many endpoints the

device has, its power requirements, what bus bandwidth it requires, and what
driver to load.

This sign-on process is calléthumeration

EZ-USB TRM v1.9 Chapter 1. Introducing EZ-USB Page 1-9

1.10 The USB Core

D
A
Payload A O/l Al Payload A
Data i M D . Data 5
K T A K
R|| Pl 5[] I
Data Packet H/S Pk Token Packet Data Packet H/S Pk
Payload
Data
5> DE Serial
\) Interface Payload
I H Data
% Engine
N
L~

(SIE)

A
a
USB K

Tranceiver

ozm
ozm
O3V O

o
U
pe

= >-H>0
oL 0XTO
o, 0XTO

R|| P|| 5

ETIEF
ERETY

Token Packet

P

Figure 1-8. What the SIE Does

Every USB device has a Serial Interface Engine (SIE). The SIE connects to the USB data
lines D+ and D-, and delivers bytes to and from the USB device. Figure 1-8 illustrates a
USB bulk transfer, with time moving from left to right. The SIE decodes the packet PIDs,
performs error checking on the data using the transmitted CRC bits, and delivers payload
data to the USB device. If the SIE encounters an error in the data, it automatically indi-
catesno responsénstead of supplying a handshake PID. This instructs the host to re-
transmit the data at a later time.

Bulk transfers such as the one illustrated in Figure 1-8ag@chronousmeaning that

they include a flow control mechanism using ACK and NAK handshake PIDs. The SIE
indicatesbusyto the host by sending a NAK handshake packet. When the peripheral
device has successfully transferred the data, it commands the SIE to send an ACK hand-
shake packet, indicating success.

To send data to the host, the SIE accepts bytes and control signals from the USB device,
formats it for USB transfer, and sends it over the two-wire USB. Because the USB uses a
self-clocking data format (NRZI), the SIE also inserts bits at appropriate places in the bit
stream to guarantee a certain number of transitions in the serial data. This is called “bit
stuffing,” and is transparently handled by the SIE.

Page 1-10 Chapter 1. Introducing EZ-USB EZ-USB TRM v1.9

One of the most important features of the EZ-USB family is thatsofé Instead of

requiring ROM or other fixed memory, it contains internal program/data RAM that is
downloaded over the USB itself to give the device its unique personality. This make mod-
ifications, specification revisions, and updates a snap.

The EZ-USB family can connect as a USB device and download code into internal RAM,
all while its internal 8051 is held in RESET. This is done by an enhanced SIE, which does
all of the work shown in Figure 1-8, and more. It contains additional logic to perform a

full enumeration, using an internal table of descriptors. It also responds to a vendor spe-
cific “Firmware Download” device request to load its internal RAM. An added bonus is
that the added SIE functionality is also made available to the 8051. This saves 8051 code
and processing time.

Throughout this manual, the SIE and its enhancements are referred to as the “USB Core.”

1.11 EZ-USB Microprocessor

The EZ-USB microprocessor is an enhanced 8051 core. Use of an 8051 compatible pro-
cessor makes extensive software support tools immediately available to the EZ-USB
designer. This enhanced 8051 core, described in Chapter 2, "EZ-USB CPU" and Appen-
dices A-C, has the following features:

» 4-clock cycle, as compared to the 12-clock cycle of a standard 8051, giving a 3X
speed improvement.

» Dual data pointers for faster memory-to-memory transfers.

 Two UARTSs.

* Three counter-timers.

* An expanded interrupt system.

* 24-MHz clock.

» 256 bytes of internal register RAM.

» Standard 8051 instruction set—if you know the 8051, you know EZ-USB

The enhanced 8051 core uses on-chip RAM as program and data memory, giving EZ-USB
its softfeature. Chapter 3, "EZ-USB Memory" describes the various memory options.

EZ-USB TRM v1.9 Chapter 1. Introducing EZ-USB Page 1-11

The 8051 communicates with the SIE using a set of registers, which occupy the top of the
on-chip RAM address space. These registers are grouped and described by function in
individual chapters of this reference manual, and summarized in register order in Chapter
12, "EZ-USB Registers."

The EZ-USB 8051 has two duties. First, it participates in the protocol defined drihe
versal Serial Bus Specification Version 1.1, “Chapter 9, USB Device Framework.”

Thanks to EZ-USB enhancements to the SIE and USB interface, the 8051 firmware asso-
ciated with USB overhead is simplified, leaving code space and bandwidth available for
the 8051’s primary duty, to help implement your device. On the device side, abundant
input/output resources are available, including 10 ports, UARTSs, anéahus master
controller. These resources are described in Chapter 4, "EZ-USB Input/Output.”

1.12 ReNumeratiofl

Because it isoft the EZ-USB chip can take on the identities of multiple distinct USB
devices. The first device downloads your 8051 firmware and USB descriptor tables over
the USB cable when the peripheral device is plugged in. Once downloaded, another
device comes on as a totally different USB peripheral as defined by the downloaded infor-
mation. This two-step process, called ReNumeratignappens instantly when the

device is plugged in, with no hint that the initial load step has occurred.

Chapter 5, "EZ-USB Enumeration and ReNumeration™ describes this feature in detail,
along with other EZ-USB boot (startup) modes.

1.13 EZ-USB Endpoints

TheUniversal Serial Bus Specification Version fidfines an endpoint as a source or sink

of data. Since USB is a serial bus, a device endpoint is actually a FIFO which sequentially
empties/fills with USB bytes. The host selects a device endpoint by sending a 4-bit
address and one direction bit. Therefore, USB can uniquely address 32 endpoints, INO
through IN15 and OUTO through OUT15.

From the EZ-USB point of view, an endpoint is a buffer full of bytes received or to be
transmitted over the bus. The 8051 reads endpoint data from an OUT buffer, and writes
endpoint data for transmission over USB to an IN buffer.

Four USB endpoint types are defined as: Bulk, Control, Interrupt, and Isochronous.

Page 1-12 Chapter 1. Introducing EZ-USB EZ-USB TRM v1.9

1.13.1 EZ-USB Bulk Endpoints

Bulk endpoints are unidirectional—one endpoint address per direction. Therefore end-
point 2-IN is addressed differently than endpoint 2-OUT. Bulk endpoints use maximum
packet sizes (and therefore buffer sizes) of 8, 16, 32, or 64 bytes. EZ-USB provides four-
teen bulk endpoints, divided into seven IN endpoints (endpoint 1-IN through 7-IN), and
seven OUT endpoints (endpoint 1-OUT through 7-OUT). Each of the fourteen endpoints
has a 64-byte buffer.

Bulk data is available to the 8051 in RAM form, or as FIFO data using a special EZ-USB
Autopointer(Chapter 6, "EZ-USB Bulk Transfers").

1.13.2 EZ-USB Control Endpoint Zero

Control endpoints transfer mission-critical control information to and from the USB
device. TheUniversal Serial Bus Specification Version tehuires every USB device to
have a default CONTROL endpoint, endpoint zero. Device enumeration, the process that
the host initiates when the device is first plugged in, is conducted over endpoint zero. The
host sends all USB requests over endpoint zero.

Control endpoints are bi-directional; if you have an endpoint O IN CONTROL endpoint,
you automatically have an endpoint 0 OUT endpoint. Control endpoints alone accept
SETUP PIDs.

A CONTROL transfer consists of a two or three stage sequence:

« SETUP
* DATA (If needed)
« HANDSHAKE

Eight bytes of data in the SETUP portion of the CONTROL transfer have special USB
significance, as defined in théniversal Serial Bus Specification Version 1.1, “Chapter

9.” A USB device must respond properly to the requests described in this chapter to pass
USB compliance testing (usually referred to as the USB “Chapter Nine Test”).

Endpoint zero is the only CONTROL endpoint in the EZ-USB chip. The 8051 responds to
device requests issued by the host over endpoint zero. The EZ-USB core is significantly
enhanced to simplify the 8051 code required to service these requests. Chapter 7, "EZ-
USB Endpoint Zero" provides a detailed roadmap for writing USB Chapter 9 compliant
8051 code.

EZ-USB TRM v1.9 Chapter 1. Introducing EZ-USB Page 1-13

1.13.3 EZ-USB Interrupt Endpoints

Interrupt endpoints are almost identical to bulk endpoints. Fourteen EZ-USB endpoints
(EP1-EP7, IN, and OUT) may be used as interrupt endpoints. Interrupt endpoints have
maximum packet sizes up to 64, and contain a “polling interval” byte in their descriptor to
tell the host how often to service them. The 8051 transfers data over interrupt endpoints in
exactly the same way as for bulk endpoints. Interrupt endpoints are described in Chapter
6, "EZ-USB Bulk Transfers."

1.13.4 EZ-USB Isochronous Endpoints

Isochronous endpoints deliver high bandwidth, time critical data over USB. Isochronous
endpoints are used to stream data to devices such as audio DACs, and from devices such
as cameras and scanners. Time of delivery is the most critical requirement, and isochro-
nous endpoints are tailored to this requirement. Once a device has been granted an isoch-
ronous bandwidth slot by the host, it is guaranteed to be able to send or receive its data
every frame.

EZ-USB contains 16 isochronous endpoints, numbered 8-15 (8IN-15IN, and 80UT-
150UT). 1,024 bytes of FIFO memory are available to the 16 endpoints, and may be
FIFO memory to provide double-buffering. Using double buffering, the 8051 reads OUT
data from isochronous endpoint FIFOs containing data from the previous frame while the
host writes current frame data into the other buffer. Similarly, the 8051 loads IN data into
isochronous endpoint FIFOs that will be transmitted over USB during the next frame
while the host reads current frame data from the other buffer. At every SOF the USB
FIFOs and 8051 FIFOs switch, ping-pong

Isochronous transfers are described in Chapter 8, "EZ-USB Isochronous Transfers."

1.14 Fast Transfer Modes

The following versions of the EZ-USB have a fast transfer mode: AN2125SC,
AN2126SC, AN2135SC, AN2136SC, and AN2131QC, that is, those versions that have a
data bus (see Table 1-2). The fast transfer mode minimizes the transfer time from EZ-USB
core also supplies external FIFO read and write strobes to synchronize the transfers.

Using the fast transfer mode, the 8051 transfers a byte of data between an internal FIFO

and the external bus using a single 8051 MOVX instruction, which takes two cycles or
333 ns. Both Isochronous and Bulk endpoints can use this fast transfer mode.

Page 1-14 Chapter 1. Introducing EZ-USB EZ-USB TRM v1.9

1.15 Interrupts

The EZ-USB enhanced 8051 adds seven interrupt sources to the standard 8051 interrupt
system. Three of the added interrupts are used internally, and the others are available on
device pins. INT2 is used for all USB interrupts. INT3 is used by #rihterface. A

third interrupt is used for remote wakeup indication.

The EZ-USB core automatically supplies jump vectors (Autovectors) for its USB inter-
rupts to save the 8051 from having to test bits to determine the source of the interrupt.
Each BULK/CONTROL/INTERRUPT endpoint has its own vector, so when an endpoint
requires service, the proper interrupt service routine is automatically invoked. The 8051
services all isochronous endpoints in response to a SOF (Start Of Frame) interrupt request.
Chapter 9, "EZ-USB Interrupts" describes the EZ-USB interrupt system.

1.16 Reset and Power Management

The EZ-USB chip contains four resets:
* Power-On-Reset (POR)
* USB bus reset
» 8051 reset
» USB Disconnect/Re-connect

The functions of the various EZ-USB resets are described in Chapter 10, "EZ-USB
Resets."

A USB peripheral may be put into a low power state when the host sigisalspenaper-

ation. TheUniversal Serial Bus Specification Version states that a bus powered device
cannot draw more than 5Q@\ of current from the Vcc wire while in suspend. The EZ-

USB chip contains logic to turn off its internal oscillator and entsleepstate. A special
interrupt, triggered by a wakeup pin or wakeup signaling on the USB bus, starts the oscil-
lator and interrupts the 8051 to resume operation.

Low power operation is described in Chapter 11, "EZ-USB Power Management."

EZ-USB TRM v1.9 Chapter 1. Introducing EZ-USB Page 1-15

1.17 EZ-USB Product Family

The EZ-USB family is available in various pinouts to serve different system requirements
and costs. Table 1-2 shows the feature set for each member of the EZ-USB Series 2100
Family.

Table 1-2. EZ-USB Series 2100 Family

Part s Key Features Max UART Power BN
Number | Size | SO Endpoints DataBus | VORate |Prog| Package (AS{Ef,ﬁngd g&pl)\t/:gr? STOP
Support or Port B | Bytes/s Max | 1/Os

AN2121S | 4KB Y 32 Port B 600K 16 | S=44PQFP 115.2 N N
AN2122S | 4KB N 13 Port B 600K 16 | S=44PQFP 2304 N Y
AN2122T | 4KB N 13 Port B 600K 19 | T=48TQFP 2304 Y Y
AN2125S | 4KB Y 32 Data Bus M 8 | S=44PQFP 115.2 N N
AN2126S | 4KB N 13 Data Bus 2M 8 | S=44PQFP 2304 N Y
AN2126T | 4KB N 13 Data Bus 2M 11 | T=48TQFP 230.4 Y Y
AN2131Q | 8KB Y 32 Both 2M 24 | Q=80 PQFP 1152 N N
AN2131S | 8KB Y 32 Port B 600K 16 | S=44PQFP 115.2 N N
AN2135S | 8KB Y 32 Data Bus 2M 8 | S=44PQFP 115.2 N N
AN2136S | 8KB N 16 Data Bus M 8 | S=44PQFP 115.2 N N

1.18 Summary of AN2122, AN2126 Features

This section summarizes the features of the AN2122 and AN2126 packages. These fea-
tures are not available in the other packages of the EZ-USB family.
Power Saving Option

To reduce power, the 8051 processor can be run at half speed. When the CPU12MHZ pin
is tied high, the 8051 processor core runs at 12 MHz. When tied low, the 8051 runs at the
normal 24 MHz. The logic state of this pin should never be changed while the 8051 is
running.

230 Kbaud UART Operation

Two control bits in a register, UART230, allow 230-Kbaud operation by UARTO and
UARTL1 (see Section 12.8, "230-Kbaud UART Operation - AN2122, AN2126").

Page 1-16 Chapter 1. Introducing EZ-USB EZ-USB TRM v1.9

48-pin Variants

There are two 48-pin devices:

AN2122T
AN2126T

The four extra pins are used as follows:

* PA7, PAG, and PAO are GPIO pins. This makes five of the eight PORTA pins
available (all except PA1-PA3).
* CPU12MHZ - This input controls the speed of the 8051:

- tied high 12 MHz
- tied low 24 MHz

Bulk Endpoints

The AN2122 and AN2126 have a reduced set of thirteen bulk endpoints (see Section 6.1,
"Introduction™).

Interrupts

The AN2122 and AN2126 contain two interrupts not present in the other AN21xx family
members.

* AnIBN (In-Bulk NAK) interrupt request activates when an IN packet is NAKd by
the SIE because the 8051 has not loaded the buffer (and byte count register) for an
IN endpoint. This is useful for applications that need to know when the host is
pingingan IN endpoint (see Section 9.13, "In Bulk NAK Interrupt - (AN2122/
AN2126 only)").

e AnI2Cinterrupt source is added to ti€linterrupt (INT3), indicating that trans-

mission of a STOP bit is complete (see Section 9.2¢ $TOP Complete Inter-
rupt - (AN2122/AN2126 only)").

1.19 Reuvision ID

The Revision ID for each part is shown in Table 1.2. The revision value is reported in the
internal DID (Device ID), which is the value read by the host during enumeration if no
EEPROM is connected to théd bus. This value also appears in the CPUCS register bits.

EZ-USB TRM v1.9 Chapter 1. Introducing EZ-USB Page 1-17

1.20 Pin Descriptions

Figures 1-9 through 1-13 are pin descriptions by package type. Table 1-3 describes the
pins by pin function.

ﬂﬁﬂﬂﬂﬂﬂﬂﬂﬁﬂﬂﬁﬂﬂﬁﬁﬂﬁﬁﬂ

Q
U

BKPT

GND

PB7/T2o0ut
PB6/INT6

PB5/INT5#
PB4/INT4

DO

™ N oo
[a el

PB3/TxD1

PB2/RxD1
PB1/T2EX
PBO/T2

5 ECE
51 M

&7

4

PC7/RD#

scL [65 | 20 | PC6MWR#
WAKEUP# [66 | 39] PC5/TL
NC [67 | 38 | Pca/mo
PAO/TOOUt [68 | 37] A15
PALTIout [69 | 36] A4
PA2/OE# [70 | | 35 | A1
PAs/CS# [71 | 8 O P Q F P 32] A2
GND BRI 33 | PC3/NT1#
PA4FWR: [73 32] PC2/INTO#
PAS/FRD# % 14 X 20 mm % PCL/TxDO
PAB/RXDOOUt [75 | 30 | PCO/RxDO
PA7/RXDlout [76 | 20] AL
UsBD- [77 | 28] A10
o [78 | O 27] A9
UsBD+ [79 | 26 | A8
PSEN# [8o | 25 | RESET
L

Page 1-18

II

DISCON#

TRREEREERCRERREEEE

o
el <02
ol

Figure 1-9. 80-pin PQFP Package (AN2131Q)

Chapter 1. Introducing EZ-USB

AGND

z
X

XOuT

AvCC

Q
8}
>

] 5
(O]

EZ-USB TRM v1.9

#* ® ¥ &

P4 Q =)

§ + . x = z

O 8 8 & k£ 4
o 2 & 8§ 2 I B £ g 3 B
B o0 O O a a @ = o o @

I
&]
8]
&
5]
8
8
<
8]
&
2]

Sy [1 | O BEERE \cc
clkaa [2 | [32 | BKPT
oND IEEEN [31 | PB7/T20UT
e\l [4 | [30 | PB6/INTG
[(5 | 44 P Q F P 20 | PBS/NTSH#
bl [6 | [28 | PB4/INT4
AGND [7 | 10 X 10 m m | 27 | PB3/TxD2
XIN [8 | [26] PB2IRxD2
xouT [9 | [25 | PBUT2EX
avcc [10 | [24] PBOMT2
vee T BEEEIRE G\D

VCC

&) | S|
RESET [& |
PCORXDO [& |
PCUTXDO [& |
PC2/INTO# [5 |
PC3/INT1# [& |
pcato [% |
pcoml [B |
PcewR# [S |
PC7TRD# | R |
LR

Figure 1-10. 44-pin PQFP Package with Port B (AN2121S, AN2122S, and AN2131S)

EZ-USB TRM v1.9 Chapter 1. Introducing EZ-USB Page 1-19

VCC
DISCON#
USBD+
USBD-
PA5/FRD#
PA4/FWR#
GND
WAKEUP#
SCL

SDA

GND

S
| 8]
| 8]
-
| 5]
8]
| 8]
N
| 8]
| &
2]

6l [1 | O BEEEN \cc
clk24 [2 | [32] BkpT
E | 31 | D7
[4] [30 | s
o 44 PQFP = e
Oy [6 | | 28 | D4
AGND [7 | 10 X 10 mm | 27] D3
xN [8 | [26 | D2
xout [9 | [25] D
AvcCc [10 | [24] Do
vee [N BEEEERE c\D

oND IS
RESET [& |
PCORXDO [& |
PCUTXDO [& |
PC2INTO# [5 |
PC3/INT1# [9 |
pcamo [& |
pcsTl [o |
PCEWRE [S |
pc7/RD# [R |
Yoed | N |

Figure 1-11. 44-pin Package with Data Bus (AN2125S, AN2126S, AN2135S, and AN2136)

Page 1-20 Chapter 1. Introducing EZ-USB EZ-USB TRM v1.9

SCL
SDA

A cc
| &] Discon#
| & | usBD+
| & | useD-
| & | PA6/RXDOOUT
| &] PASIFRD#
| &] PA4IFWR#
I oo
| & | waKEUPH
8
8
A D

~

[oo [memm

CLk24 [2 |
oo [
oo (e

TG (.
T o [48 TQFP

AGND [7 |
PA7/RxD1OUT | 8 7 X 7 mm

XN[9 |
XOUT[10 |

AvcCc [11 |

L vcc|mpm

O

o6
[35 | BKPT

| 34]| PAO/TOOUT
| 33] PB7/T20UT
| 32 | PB6/INT6
[31 | PBS/INTS#
| 30 | PB4/INT4
| 29] PB3/TxD1
| 28 | PB2/RxD1
| 27 | PBUT2EX
| 26 | PBO/T2

)

VCC

PC4/TO S
PC5/T1 N
PCOMWRY# [N |
PC7/RD# 5

N
D

GND

5
RESET [% |
cpuizmHz | & |
PCO/RXxDO [5 |
pcuTxD0 [R |
PC2/INTO# [& |
PC3/INT1# [5 |

Analog VCC and GND

Extra pins in 48-pin package

Figure 1-12. 48-pin TQFP Package (AN2122T)

EZ-USB TRM v1.9 Chapter 1. Introducing EZ-USB

Page 1-21

SCL
SDA

A vcc
| &]| piscong
| & | usBD+
| & | useD-
| ® | PA6/RxDOOUT
| &] PASIFRD#
| 8] PA4IFWR#
I c\D
| & | WAKEUPH
8
8
3 1IE

[oo [EE)vcc |

CLk24 [2| O | 35] BKPT
[ono [| 34 | PAoToOUT
[ono [32 | s
B 48 TQFP a0

AGND [7 | | 30] D4
PA7/RXD1OUT [8 | 7 X 7 mm [29] D3

XIN[9 | [28 | D2
XOuT [10 | | 27] D1
Avcc [11 | | 26 | DO

cND [
RESET [& |
cPUL2MHZ [& |
PCO/RXxDO [5 |
pcuTxDO [R |
PC2/INTO# [& |
PC3/INT1# [2 |
pcarro [S |
PC5TL [R |
PC6MWR% [N |
PC7RD# [B |
vee IR

Analog VCC and GND

Extra pins in 48-pin package

Figure 1-13. 48-pin TQFP Package (AN2126T)

Page 1-22 Chapter 1. Introducing EZ-USB EZ-USB TRM v1.9

Table 1-3. EZ-USB Series 2100 Pinouts by Pin Function

21215 | 71252
2131Q | 2122S 21355 2122T | 2126T Name Type | Default Description
2131S 21365
21 10 10 n 1 AVCC Power | N/A | Analog Vcc. This signal provides power to the ana-
log section of the chip.
18 7 7 7 7 AGND Power | N/A | Analog Ground. Connect to ground with as short a

path as possible.

1 43 43 47 47 DISCON# |Output| HI |Disconnect. This pin is controlled by two bits,
DISCOE and DISCON. When DISCOE=0, the pin
floats. When DISCOE=1, it drives. When
DISCOE-=1, the driven logic level is the inverse of
the DISCON bit.

7 41 41 45 45 USBD 11012 z USB D- signal. Connect to the USB D- signal
through a 24-ohm resistor.
79 42 42 46 46 USBD 11012 z USB D+ signal. Connect to the USB D+ pin through

a 24-ohm resistor.
7-12, | N/A N/A N/A N/A A0-A5, A6, | Output | 0x0000 | 8051 Address bus. This bus is driven at all times.

15,16, A7, A8-All, When the 8051 is addressing internal RAM it reflects
26-29, Al12-A15 the internal address.

34-37

48-51, | N/A |24-27,| N/A |26-29, | DO-D3,D4- | 1/0/Z YA 8051 Data bus. This bi-directional bus is high-
57-60 28-31 30-33 D7 impedance when inactive, input for bus reads, and

output for bus writes. The data bus is also used to
transfer data directly to and from internal EZ-USB
FIFOs under control of the FRD# and FWR#
strobes. DO0-D7 are active only for external bus
accesses, and are driven low in suspend.

80 N/A | N/A | NA | NA PSEN# Output H Program Store Enable. This active-low signal indi-
cates a code fetch from external memory. Itis active
for program memory fetches above 0x1B40 when
the EA pin is LO, or above 0x0000 when the EA

pin is HI.

61 32 32 35 35 BKPT Output 0 Breakpoint. This pin goes active (high) when the
8051 address bus matches the BPADDRHIL regis-
ters and breakpoints are enabled in the USBBAV
register (BPEN=1). If the BPPULSE bit in the
USBBAV register is Hl, this signal pulses high for
eight 24-MHz clocks. If the BPPULSE bit is LO, the
signal remains high until the 8051 clears the BREAK
bit (by writing 1 to it) in the USBBAV register.

25 13 13 14 14 RESET Input N/A | Active High Reset. Resets the 8051 and the USB
SIE. This pin is normally tied to ground through a
10K-ohm resistor and to Vcc through a 1 pF capac-
itor.

EZ-USB TRM v1.9 Chapter 1. Introducing EZ-USB Page 1-23

Table 1-3. EZ-USB Series 2100 Pinouts by Pin Function

2131Q

21218
21228
2131S

21258
2126S
21358
2136S

21227

2126T

Name

Type

Default

Description

24

N/A

N/A

N/A

N/A

EA

Input

N/A

External Access. If this signal is active (high), the
8051 fetches code from external memory instead of
the internal program RAM. If EA=0, the 8051
fetches code from external memory starting at
0x1B40 (AN2131).

19

XIN

Input

N/A

Crystal Input. Connect this signal to a 12-MHz
series resonant, fundamental mode crystal and 22-
33-pF capacitor to GND. This pin may also be
driven by a 12-MHz clock.

20

10

10

XOouT

Output

N/A

Crystal Output. Connect this signal to a 12-MHz
series resonant, fundamental mode crystal and 22-
33-pF capacitor to GND. If XIN is driven by a 12-
MHz clock, this pin should not be connected.

68

N/A

N/A

34

34

PAO or
TOOUT

10

(PAQ)

Multiplexed pin whose function is selected by the
TOOUT bit of the PORTACFG register. If TOOUT=0,
the pin is the bi-directional I/O port bit PAO. If
TOOUT=1, the pin is the active-high TOOUT signal
from 8051 Timer/Counter0.

TOOUT outputs a high level for one CLK24 clock
cycle when Timer0 overflows. If Timer0 is operated
in mode 3 (two separate timer/counters), TOOUT is
active when the low byte timer/counter overflows.

69

N/A

N/A

N/A

N/A

PAL or
T10UT

I/0

(PAL)

Multiplexed pin whose function is selected by the
T1OUT bit of the PORTACFG register. If TLOUT=0,
the pin is the bi-directional I/O port bit PAL. If
T10UT=1, the pin is the active-high TLOUT signal
from 8051 Timer-counterl

T10UT outputs a high level for one CLK24 clock
cycle when Timer1 overflows. If Timerl is operated
in mode 3 (two separate timer/counters), TLOUT is
active when the low byte timer/counter overflows.

70

N/A

N/A

N/A

N/A

PA2 or OE#

I/0

(PA2)

Multiplexed pin whose function is selected by the OE
bit of the PORTACFG register. If OE=0, the pin is
the bi-directional I/O port pin PA2. If OE=1, the pin
is an active-low output enable for external memory.
If the OE# pin is used, it should be externally pulled
up to Vcce to ensure that the write strobe is inactive
(high) at power-on.

Page 1-24

Chapter 1. Introducing EZ-USB

EZ-USB TRM v1.9

Table 1-3. EZ-USB Series 2100 Pinouts by Pin Function

2131Q

21218
21228
2131S

21258
2126S
21358
2136S

21227

2126T

Name

Type

Default

Description

71

N/A

N/A

N/A

N/A

PA3 or CS#

10

(PA3)

Multiplexed pin whose function is selected by the CS
bit of the PORTACFG register. If CS=0, the pin is
the bi-directional I/O port pin PA3. If CS=1, the pinis
an active-low chip select for external memory. If the
CS# pin is used, it should be externally pulled up to
Vcc to ensure that the write strobe is inactive (high)
at power-on.

73

39

39

N/A

N/A

PA4 or FWR#

10

(PA4)

Multiplexed pin whose function is selected by the
FWR (Fast Write) bit of the PORTAFCG register. If
FWR=0, the pin is the bi-directional I/O port pin PA4.
If FWR=1, the pin is the write strobe for an external
FIFO. If the FWR# pin is used, it should be exter-
nally pulled up to Vcc to ensure that the write strobe
is inactive (high) at power-on.

74

40

40

N/A

N/A

PA5 or FRD#

10

(PA5)

Multiplexed pin whose function is selected by the
FRD (Fast Read) bit of the PORTAFCG register. If
FRD=0, the pin is the bi-directional I/O port pin PA5.
If FRD=1, the pin is the read strobe for an external
FIFO. If the FRD# pin is used, it should be exter-
nally pulled up to Vcc to ensure that the write strobe
is inactive (high) at power-on.

75

N/A

N/A

44

44

PA6 or
RXDOOUT

I/0

(PAG)

Multiplexed pin whose function is selected by the
RXDOOUT bit of the PORTAFCG register. If
RXDOOUT=0 (default), the pin is the bi-directional
/0 port bit PA6. If RXDOOUT=1, the pin is the
active-high RXDOOUT signal from 8051 UARTO.

If RXDOOUT is selected and UARTO is in mode 0,
this pin provides the output data for UARTO only
when it is in sync mode. Otherwise, itisa 1.

76

N/A

N/A

PA7 OR
RXD10OUT

I/0

(PAT7)

Multiplexed pin whose function is selected by the
RXD1OUT bit of the PORTAFCG register. If
RXD10OUT=0 (default), the pin is the bi-directional
/O port bit PA7. If RXD1OUT=1, the pin is the
active-high RXD1OUT signal from 8051 UARTL.

When RXD10UT is selected and UART1 is in mode
0, this pin provides the output data for UaRT1 only
when it is in sync mode. In modes 1, 2, and 3, this
pinisal.

EZ-USB TRM v1.9

Chapter 1. Introducing EZ-USB Page 1-25

Table 1-3. EZ-USB Series 2100 Pinouts by Pin Function

2131Q

21218
21228
2131S

21258
2126S
21358
2136S

21227

2126T

Name

Type

Default

Description

44

24

N/A

26

N/A

PBO or T2

10

(PBO)

Multiplexed pin whose function is selected by the T2
bit of the PORTBFCG register. If T2=0, the pinis the
bi-directional I/0 port bit PBO. If T2=1, the pin is the
active-high T2 signal from 8051 Timer2, which pro-
vides the input to Timer2 when C/T2=1. When
CIT2=0, Timer2 does not use this pin.

45

25

N/A

27

N/A

PB1 or T2EX

10

(PB1)

Multiplexed pin whose function is selected by the
T2EX bit of the PORTBCFG register. If T2EX=0, the
pin is the bi-directional I/O port bit PB1. If T2EX=1,
the pin is the active-high T2EX signal from 8051
Timer2.

46

26

N/A

28

N/A

PB2 or RXD1

10

(P{B2)

Multiplexed pin whose function is selected by the
RXD1 bit of the PORTBCFG register. If RXD1=0,
the pin is the bi-directional I/0 port bit PB2. If
RXD1=1, the pin is the active-high RXD1 input sig-
nal for 8051 UART1, which provides data to the
UART in all modes.

47

27

N/A

29

N/A

PB3 or TXD1

10

(PB3)

Multiplexed pin whose function is selected by the
TXD1 bit of the PORTBCFG register. If TXD1=0, the
pin is the bi-directional I/O port bit PB3. If TXD1=1,
the pin is the active-high TXD1 output pin for 8051
UART1 which provides the output clock in sync
mode and the output data in async mode.

52

28

N/A

30

N/A

PB4 or INT4

I/0

(PB4)

Multiplexed pin whose function is selected by the
INT4 bit of the PORTBCFG register. If INT4=0, the
pin is the bi-directional I/O port bit PB4. If INT4=1,
the pin is the 8051 INT4 interrupt request signal.
The INT4 pin is edge-sensitive, active high.

53

29

N/A

31

N/A

PB5 or INTS#

10

(PB5)

Multiplexed pin whose function is selected by the
INT5 bit of the PORTBCFG register. If INT5=0, the
pin is the bi-directional I/O port bit PB5. If INT5=1,
the pin is the INT5# interrupt register signal. The
INT5# pin is edge-sensitive, active low.

54

30

N/A

32

N/A

PB6 or INT6

I/0

(PB6)

Multiplexed pin whose function is selected by the
INTG6 bit of the PORTBCFG register. If INT6=0, the
pin is the bi-directional I/O port bit PB6. If INT6=1,
the pin is the INT6 interrupt request signal. The
INT6 pin is edge-sensitive, active high.

Page 1-26

Chapter 1. Introducing EZ-USB

EZ-USB TRM v1.9

Table 1-3. EZ-USB Series 2100 Pinouts by Pin Function

2131Q

21218
21228
2131S

21258
2126S
21358
2136S

21227

2126T

Name

Type

Default

Description

55

31

N/A

33

N/A

PB7 or
T20UT

10

(PB7)

Multiplexed pin whose function is selected by the
T20UT bit of the PORTBCFG register. If T20UT=0,
the pin is the bi-directional I/0 port bit PB7. If
T20UT=1, the pin is the active-high T20UT signal
from 8051 Timer2.

T20UT s active (high) for one clock cycle when
Timer/Counter 2 overflows.

30

14

14

16

16

PCO or RXDO

10

(PCO)

Multiplexed pin whose function is selected by the
RXDO bit of the PORTCCFG register. If RXD0=0,
the pin is the bi-directional I/O port bit PCO. If
RXDO0=1, the pin is the active-high RXDO from 8051
UARTO, which provides data to the UART in all
modes.

31

15

15

17

17

PC1 or TXDO

10

(PCY)

Multiplexed pin whose function is selected by the
TXDO bit of the PORTCCFG register. If TXD0=0,
the pin is the bi-directional I/O port bit PC1. If
TXDO0=1, the pin is the active-high TXDO signal for
8051 UARTO, which provides the output clock in
sync mode, and the output data in async mode.

32

16

16

18

18

PC2 or INTO#

I/0

(PC2)

Multiplexed pin whose function is selected by the
INTO bit of the PORTCCFG register. If INTO=0, the
pin is the bi-directional I/O port bit PC2. If INT0=1,
the pin is the active-low 8051 INTO interrupt input
signal, which is either edge triggered (IT0=1) or level
triggered (IT0=0).

33

17

17

19

19

PC3 or INT1#

I/0

(PC3)

Multiplexed pin whose function is selected by the
INT1 bit of the PORTCCFG register. If INT1=0, the
pin is the bi-directional I/O port bit PC3. If INT1=1,
the pin is the active-low 8051 INTX interrupt input
signal, which is either edge triggered (IT1=1) or level
triggered (IT1=0).

38

18

18

20

20

PC40rTO0

I/0

(PC4)

Multiplexed pin whose function is selected by the TO
bit of the PORTCCFG register. If T0=0, the pin is
the bi-directional I/0 port bit PC4. If T0=1, the pin is
the active-high T0 signal for 8051 Timer0, which pro-
vides the input to Timer0 when C/TOis 1. When C/
TO is 0, Timer0 does not use this bit.

39

19

19

21

21

PC50rT1

110

(PC5)

Multiplexed pin whose function is selected by the T1
bit of the PORTCCFG register. If T1=0, the pin is
the bi-directional I/0 port bit PC5. If T1=1, the pin is
the active-high T1 signal from 8051 Timer1, which
provides the input to Timerl when C/T1is 1. When
CITOis 0, Timerl does not use this bit.

EZ-USB TRM v1.9

Chapter 1. Introducing EZ-USB Page 1-27

Table 1-3. EZ-USB Series 2100 Pinouts by Pin Function

2131Q

21218
21228
2131S

21258
2126S
21358
2136S

21227

2126T

Name

Type

Default

Description

40

20

20

22

22

PC6 or WR#

10

(PC6)

Multiplexed pin whose function is selected by the
WR bit of the PORTCCFG register. If WR=0, the pin
is the bi-directional I/O port bit PC6. If WR=1, the
pin is the active-low write signal for external mem-
ory. If the WR# signal is used, it should be externally
pulled up to Vcc to ensure that the write strobe is
inactive at power-on.

41

21

21

23

23

PC7 or RD#

10

(PCT)

Multiplexed pin whose function is selected by the RD
bit of the PORTCCFG register. If RD#=0, the pin is
the bi-directional I/0 port bit PC7. If RD#=1, the pin
is the active-low read signal for external memory. If
the RD# signal is used, it should be externally pulled
up to Ve to ensure that the read strobe is inactive at
power-on.

CLK24

Output

24-MHz clock, phase locked to the 12-MHz input
clock. It operates at 12 MHz in 12-MHz mode (48-pin
package). Output is disabled by setting the
OUTCLKEN bit = 0in the CPUCS register.

66

37

37

40

40

WAKEUP#

Input

N/A

USB Wakeup. If the 8051 is in suspend, a high to
low edge on this pin starts up the oscillator and inter-
rupts the 8051 to allow it to exit the suspend mode.
Holding WAKEUP# LOW inhibits the EZ-USB chip
from entering the suspend state.

65

36

36

39

39

SCL

oD

12C Clock. Pull up to Vee with a 2.2K-ohm resistor,
even if no 1°C device is connected.

64

35

35

38

38

SDA

oD

12C Data. Connect to Ve with a 2.2K-ohm resistor
even if no 1°C device is connected.

2,22,
42,62

11,22,
33,44

11,22,
33,44

12,24,
36, 48

12,24,
36, 48

Vce

N/A

Vcce. 3.3V power source.

3,5,6,
13,14,
17,23,
43,56,
63,72,
78

1,3,4,
5,6,
12,23,
34,38

1,3,4,
5,6,
12,23,
34,38

1,3,4,
5,6,
13,25,
37,41

1,3,4,
5,6,
13,25,
37,41

GND

N/A

Ground. Note: On the 80-pin package, pins 5, 6, 13,
14, and 72 are test pins that must be grounded for
normal operation. Driving pin 72 high floats all func-
tional pins for automated board test.

The corresponding pins on the 44-pin package are
pins 3, 4, 5, 6, and 38. Driving pin 38 high floats all
functional pins for automated board test.

The corresponding pins on the 48-pin package are
pins 3, 4,5, 6, and 41. Driving pin 41 high floats all
functional pins for automated board testing.

N/A

N/A

N/A

15

15

CPU12MHZ

N/A

This input controls the speed of the 8051:
- Tied High - 12 MHz
- Tied Low - 24 MHz

67

N/A

N/A

N/A

N/A

NC

N/A

This pin must be left unconnected.

Page 1-28

Chapter 1. Introducing EZ-USB

EZ-USB TRM v1.9

2 EZ-USB CPU

2.1 Introduction

The EZ-USB built-in microprocessor, an enhanced 8051 core, is fully described in Appen-
dices A-C. This chapter introduces the processor, its interface to the EZ-USB core, and
describes architectural differences from a standard 8051.

2.2 8051 Enhancements

The enhanced 8051 core uses the standard 8051 instruction set. Instructions execute faster
than with the standard 8051 due to two features:

» Wasted bus cycles are eliminated. A bus cycle uses four clocks, as compared to 12
clocks with the standard 8051.

e The 8051 runs at 24 MHz.

In addition to the speed improvement, the enhanced 8051 core also includes architectural
enhancements:

1. Asecond data pointer.

2. Asecond UART.

3. Athird, 16-bit timer (TIMER2).

4. A high-speed memory interface with a non-multiplexed 16-bit address bus.
5. Eight additional interrupts (INT2-INT5, PFI, T2, and UARTL1).

6. Variable MOVX timing to accommodate fast/slow RAM peripherals.

7. 3.3V operation.

EZ-USB TRM v1.9 Chapter 2. EZ-USB CPU Page 2-1

2.3 EZ-USB Enhancements

The EZ-USB chip provides additional enhancements outside the 8051. These include:
» Fast external transfers (Autopointer, Fast Transfer Mode)
* Vectored USB interrupts (Autovector)
» Separate buffers for SETUP and DATA portions of a CONTROL transfer.

» Breakpoint Facility.

2.4 EZ-USB Register Interface

The 8051 communicates with the EZ-USB core through a set of memory mapped regis-
ters. These registers are grouped as follows:

» Endpoint buffers and FIFOs
» 8051 control

e 10 ports

» Fast Transfer

¢ 12C Controller

* Interrupts

* USB Functions

These registers and their functions are described throughout this manual. A full descrip-
tion of every register and bit appears in Chapter 12, “EZ-USB Registers.”

Page 2-2 Chapter 2. EZ-USB CPU EZ-USB TRM v1.9

25 EZ-USB Internal RAM

FF Upper 128

bytes
80 Indirect Addr

SFR Space
Direct Addr

Lower 128
bytes
Direct Addr

00

Figure 2-1. 8051 Registers

Like the standard 8051, the EZ-USB 8051 core contains 128 bytes of register RAM at 00-
7F, and a partially populated SFR register space at 80-FF. An additional 128 indirectly
addressed registers (sometimes called “IDATA”) are also available at 80-FF.

All internal EZ-USB RAM, which includes program/data memory, bulk endpoint buffer
memory, and the EZ-USB register set, is addressedidson8051 memory. The 8051
reads or writes these bytes as data using the MOVX (move external) instruction. Even
though the MOVX instruction implies external memory, the EZ-USB RAM and register
set is actually inside the EZ-USB chip. External memory attached to the AN2131Q
address and data busses can also be accessed by the MOVX instruction. The EZ-USB
core encodes its memory strobe and select signals (RD#, WR#, CS#, and OE#) to elimi-
nate the need for external logic to separate the internal and external memory spaces.

2.6 I/O Ports

A standard 8051 communicates with its 1O ports 0-3 through four Special Function Regis-
ters (SFRs). Standard 8051 10 pins guasi-bidirectionalvith weak pullups that briefly
drive high only when the pin makes a zero-to-one transition.

The EZ-USB core implements IO ports differently than a standard 8051as described

in Chapter 4, "EZ-USB Input/Output.” Instead of using the 8051 10 ports and SFRs, the
EZ-USB core implements a flexible 10 system that is controlliecEZ-USB register set.
Each EZ-USB 10 pin functions identically, having the following resources:

* Anoutput latch. Used when the pin is an output port.

» A bit that indicates the state of the 10 pin, regardless of its configuration (input or
output).

EZ-USB TRM v1.9 Chapter 2. EZ-USB CPU Page 2-3

* An output enable bit that causes the 10 pin to be driven from the output latch.

* An alternate function bit that determines whether the pin is general 10 or a special
8051 or EZ-USB function.

The SFRs associated with 8051 ports 0-3 are not implemented in EZ-USB. These SFR
addresses include PO (0x80), P1 (0x90), P2 (OxAO0), and P3 (0xB0). Because P2 is not
implemented, the MOVX@RO/R1 instruction takes the upper address byte from an added
Special Function Register (SFR) at location 0x92. This register is called “MPAGE” in the
Appendices.

2.7 Interrupts

All standard 8051 interrupts are supported in the enhanced 8051 core. Table 2-1 shows
the existing and added 8051 interrupts, and indicates how the added ones are used.

Table 2-1. EZ-USB Interrupts

Standard 8051 | Enhanced 8051
Interrupts Interrupts LEES

INTO Device Pin INTO#

INT1 Device Pin INT1#

Timer 0 Internal, Timer O

Timer 1 Internal, Timer 1

Tx0 & Rx0 Internal, UARTO
INT2 Internal, USB
INT3 Internal, I)C Controller
INT4 Device Pin, PB4/INT4
INT5 Device Pin, PB5/INT5#
INT6 Device Pin, PB6/INT6
PF1 Device Pin, USB WAKEUP#
Tx1 & Rx1 Internal, UART1
Timer 2 Internal, Timer 2

The EZ-USB chip uses 8051 INT2 for 21 different USB interrupts: 16 bulk endpoints plus
SOF, Suspend, SETUP Data, SETUP Token, and USB Bus Reset. To help the 8051 deter-
mine which interrupt is active, the EZ-USB core provides a feature called Autovectoring.
The core inserts an address byte into the low byte of the 3-byte jump instruction found at
the 8051 INT2 vector address. This second level of vectoring automatically transfers con-
trol to the appropriate USB ISR. The Autovector mechanism, as well as the EZ-USB
interrupt system is the subject of Chapter 9, "EZ-USB Interrupts.”

Page 2-4 Chapter 2. EZ-USB CPU EZ-USB TRM v1.9

2.8 Power Control

The EZ-USB core implements a power-down mode that allows it to be used in USB bus
powered devices that must draw no more than |p8@vhen suspended. Power control is
accomplished using a combination of 8051 and EZ-USB core resources. The mechanism
by which EZ-USB powers down for suspend, and then re-powers to resume operation, is
described in detail in Chapter 11, “EZ-USB Power Management.”

A suspend operation uses three 8051 resourceg]lthenode and two interrupts. Many
enhanced 8051 architectures provide power control similar (or identical) to the EZ-USB
enhanced 8051 core.

A USB suspend operation is indicated by a lack of bus activity for 3 ms. The EZ-USB

core detects this, and asserts an interrupt request via the USB interrupt (8051 INT2). The
ISR (Interrupt Service Routine) turns off external sub-systems that draw power. When
ready to suspend operation, the 8051 sets an SFR bit, PCON.O. This bit causes the 8051 to
suspend, waiting for an interrupt.

When the 8051 sets PCON.O0, a control signal from the 8051 to the EZ-USB core causes
the core to shut down the 12-MHz oscillator and internal PLL. This stops all internal
clocks to allow the EZ-USB core and 8051 to enter a very low power mode.

The suspended EZ-USB chip can be awakened two ways: USB bus activity may resume,
or an EZ-USB pin (WAKEUP#) can be asserted to activate a B8B®iote WakeufEither
event triggers the following chain of events:

e The EZ-USB core re-starts the 12-MHz oscillator and PLL, and waits for the
clocks to stabilize

» The EZ-USB core asserts a special, high-priority 8051 interrupt to signal a
‘resume’ interrupt.

» The 8051 vectors to the resume ISR, and upon completion resumes executing code
at the instruction following the instruction that set the PCON.O0 bit to 1.

EZ-USB TRM v1.9 Chapter 2. EZ-USB CPU Page 2-5

29 SFRs

The EZ-USB family was designed to keep 8051 coding as standard as possible, to allow
easy integration of existing 8051 software development tools. The added 8051 SFR regis-
ters and bits are summarized in Table 2-2.

Table 2-2. Added Registers and Bits

8051 Enhancements SFR Addr Function

Dual Data Pointers | DPLO 0x82 | Data Pointer 0 Low Addr
DPHO 0x83 | Data Pointer 0 High Addr
DPL1 0x84 | Data Pointer 1 Low Addr
DPH1 0x85 | Data Pointer 1 High Addr
DPS 0x86 | Data Pointer Select (LSB)

MPAGE 0x92 | Replaces standard 8051 Port 2 for indirect
external data memory addressing

Timer 2 T2CON.6-7 | 0xC8 | Timer 2 Control
RCAP2L | OxCA | T2 Capture/Reload Value L
RCAP2H | 0xCB | T2 Capture/Reload Value H

T2L 0xCC | T2 CountL
T2H 0xCD | T2 Count H
IE.5 0xA8 | ET2-Enable T2 Interrupt Bit
IP.5 0xB8 | PT2-T2 Interrupt Priority Control
UART1 SCON1.0-1 | 0xCO | Serial Port 1 Control
SBUF1 0xC1 | Serial Port 1 Data
IE.6 0xA8 | ES1-SIO1 Interrupt Enable Bit
IP.6 0xB8 | PS1-SIO1 Interrupt Priority Control
EICON.7 | 0xD8 |SMOD1-SIO1 Baud Rate Doubler
Interrupts
INT2-INT5 EXIF 0x91 | INT2-INTS Interrupt Flags
EIE OXE8 | INT2-INTS Interrupt Enables
EIP.0-3 0xF8 | INT2-INTS Interrupt Priority Control
INT6 EICON.3 | 0xD8 |INT6 Interrupt Flag
EIE4 OXE8 | INT6 Interrupt Enable
EIP4 0xF8 | INT6 Interrupt Priority Control
WAKEUP# EICON.4 | 0xD8 | WAKEUP# Interrupt Flag
EICON.5 |0xD8 | WAKEUP# Interrupt Enable
Idle Mode PCON.0 0x87 | EZ-USB Power Down (Suspend)

Page 2-6 Chapter 2. EZ-USB CPU EZ-USB TRM v1.9

2.10 Internal Bus

Members of the EZ-USB family that provide pins to expand 8051 memory provide sepa-
rate non-multiplexed 16-bit address and 8-bit data busses. This differs from the standard
8051, which multiplexes eight device pins between three sources: |10 port 0, the external
data bus, and the low byte of the address bus. A standard 8051 system with external mem-
ory requires a de-multiplexing address latch, strobed by the 8051 ALE (Address Latch
Enable) pin. The external latch is not required by the non-multiplexed EZ-USB chip, and
no ALE signal is needed. In addition to eliminating the customary external latch, the non-
multiplexed bus saves one cycle per memory fetch cycle, further improving 8051 perfor-
mance.

A standard 8051 user must choose between using Port 0 as a memory expansion port or an
IO port. The AN2131Q provides a separate 10 system with its own control registers (in
external memory space), and provides the 10 port signals on dedicated (not shared) pins.
This allows the external data bus to be used to expand memory without sacrificing 10

pins.

The 8051 is the sole master of the memory expansion bus. It provides read and write sig-
nals to external memory. The address bus is output-only.

A specialfast transfemode gives the EZ-USB family the capability to transfer data to
and from external memory over the expansion bus using a single MOVX instruction,
which takes only two cycles (eight clocks) per byte.

2.11 Reset

The internal 8051 RESET signal is not directly controlled by the EZ-USB RESET pin.
Instead, it is controlled by an EZ-USB register bit accessible to the USB host. When the
EZ-USB chip is powered, the 8051 is held in reset. Using the default USB device (enu-
merated by the USB core), the host downloads code into RAM. Finally, the host clears an
EZ-USB register bit that takes the 8051 out of reset.

The EZ-USB family also operates with external non-volatile memory, in which case the

8051 exits the reset state automatically at power-on. The various EZ-USB resets and their
effects are described in Chapter 10, "EZ-USB Resets."

EZ-USB TRM v1.9 Chapter 2. EZ-USB CPU Page 2-7

Page 2-8 Chapter 2. EZ-USB CPU EZ-USB TRM v1.9

3 EZ-USB Memory

3.1 Introduction

EZ-USB devices divide RAM into two regions, one for code and data, and the other for
USB buffers and control registers.

7FFF
Registers/Bulk Buffers
7B40
USB Control Registers | 1FFF/7FFF
(192 bytes) 1F40/7F40
1F3F/7F3F
2T T Data (RDWR) RAM 16 x 64-byte
| If ISODISAB=1 1 Bulk Endpoint Buffers
2000 L e m e — - ! (1,024 bytes)
1FFF
Registers/Bulk Buffers 1B40/7B40
1B40 "
1B3F
Data (RD/WR) RAM
Code(PSEN) RAM if
EA=0
(6,976 bytes)
0000

Figure 3-1. EZ-USB 8-KB Memory Map - Addresses are in Hexadecimal

TFFF . > "USB Control Registers | 7FFF

Registers/Bulk Buffers (192 bytes) 540

7B40 7F3F
13 x 64-byte

Bulk Endpoint Buffers
(832 bytes)

7C00

OFFF
Code(PSEN) and

Data (RD/WR) RAM
(4096 bytes)

0000

Figure 3-2. EZ-USB 4-KB Memory Map - Addresses are in Hexadecimal

EZ-USB TRM v1.9 Chapter 3. EZ-USB Memory Page 3-1

3.2 8051 Memory

Figure 3-1 illustrates the two internal EZ-USB RAM regions. 6,976 bytes of general-pur-
pose RAM occupy addresses 0x0000-0x1B3F. This RAM is loadable by the EZ-USB
core or PC bus EEPROM, and contains 8051 code and data.

The EZ-USB EA (External Access) pin controls where the bottom segment of code
(PSEN) memory is located—inside (EA=0) or outside (EA=1) the EZ-USB chip. If the
EZ pinis tied low, the EZ-USB core internally ORs the two 8051 read signals PSEN and
RD for this region, so that code and data share the 0x0000-0x1B3F memory space. IF
EA=1, all code (PSEN) memory is external.

About 8051 Memory Spaces

The 8051 patrtitions its memory spaces into code memory and data memory. The|8051
reads code memory using the signal PSEN# (Program Store Enable), reads data memory
using the signal RD# (Data Read) and writes data memory using the signal WR# (Data
Write). The 8051 MOVX (move external) instruction generates RD# or WR# strobes.

PSEN# is a dedicated pin, while the RD# and WR# signals share pins with two 10|port
signals: PC7/RD and PC6/WR. Therefore, if expanded memory is used, the port pins
PC7 and PC6 are not available to the system.

1,024 bytes of RAM at 0x7B40-0x7F3F implement the sixteen bulk endpoint buffers. 192
additional bytes at 0x7F40-0x7FFF contain the USB control registers. The 8051 reads and
writes this memory using the MOV X instruction. In the 8-KB RAM EZ-USB version, the
1,024 bulk endpoint buffer bytes at 0x7B40-0x7F3F also appear at 0x1B40-0x1F3F. This
aliasing allows unused bulk endpoint buffer memory to be added contiguously to the data
memory, as illustrated Figure 3-3. The memory space at 0x1F40-0Ox1FFF should not be
used.

Even though the 8051 can access EZ-USB endpoint buffers at either 0x1B40 or 0x7B40,
the firmware should be written to access this memory only at 0x7B40-0x7FFF to maintain
compatibility with future versions of EZ-USB that contain more than 8 KB of RAM.
Future versions will have the bulk buffer space at 0x7B40-0x7F3F only.

Page 3-2 Chapter 3. EZ-USB Memory EZ-USB TRM v1.9

1F40
1F00
1ECO
1E80
1E40
1E00
1DCO
1D80
1D40
1D00
1CCO
1C80
1C40
1C00
1BCO
1B80
1B40
1B3F

0000

Figure 3-3. Unused Bulk Endpoint Buffers (Shaded) Used as Data Memory

EPOIN

EPOOUT

EP1IN

EP1OUT

EP2IN

EP20UT

EP3IN

EP30UT

EP4IN

EP40UT

EPSIN

EP50UT

EP6IN

EPOGUT

EP7IN

EPO70UT

Code/Data
RAM

In the example shown in Figure 3-3, only endpoints 0-IN through 3-IN are used for the

USB function, so the data RAM (shaded) can be extended to 0x1D7F.

If an application usesoneof the 16 EZ-USB isochronous endpoints, the 8051 can set the
ISODISAB bit in the ISOCTL register to disable all 16 isochronous endpoints, and make
the 2-KB of isochronous FIFO RAM available as 8051 data RAM at 0x2000-0x27FF.

Setting ISODISAB=1 is amll or nothingchoice, as all 16 isochronous endpoints are dis-
abled. An application that sets this bit must never attempt to transfer data over an isochro-

nous endpoint.

The memory map figures in the remainder of this chapter assume that ISODISAB=0, the

default (and normal) case.

EZ-USB TRM v1.9 Chapter 3. EZ-USB Memory

Page 3-3

3.3 Expanding EZ-USB Memory

The 80-pin EZ-USB package provides a 16-bit address bus, an 8-bit bus, and memory
control signals PSEN#, RD#, and WR#. These signals are used to expand EZ-USB
memory.

cerr Inside EZ-USB Outside EZ-USB
External
Data
Memory
(RD,WR)
External
Code
Memory
8000 . (PSEN)
7B40 Registers(RD,WR) (Note 1)
External
Data
Memory
(RD, WR)
2000
1FFF
1F3F Unused Bulk Buffers
ode ata
(Note 2)
0000 (PSEN,RD,WR)

Note 1: OK to populate data memory here--RD#, WR#, CS# and OE# pins are inactive.
Note 2: OK to populate code memory here--no PSEN# strobe is generated.

Figure 3-4. EZ-USB Memory Map with EA=0

Figure 3-4 shows that when EA=0, the code/data memory is internal at 0x0000-0x1B40.
External code memory can be added from 0x0000-OxFFFF, but it appears in the memory
map only at 0Ox1B40-OxFFFF. Addressing external code memory at 0x0000-0x1B3F
when EA=0 causes the EZ-USB core to inhibit the #PSEN strobe. This allows program
memory to be added from 0x0000-OxFFFF without requiring decoding to disable it
between 0x0000 and Ox1B3F.

Page 3-4 Chapter 3. EZ-USB Memory EZ-USB TRM v1.9

The internal block at 0x7B40-0x7FFF (labeled “Registers”) contains the bulk buffer mem-
ory and EZ-USB control registers. As previously mentioned, they are aliased at 0x1B40-
Ox1FFF to allow adding unused bulk buffer RAM to general-purpose memory. 8051 code
should access this memory only at the 0x7B40-0x7BFF addresses. External RAM may be
added from 0x0000 to OXFFFF, but the regions shown by Note 1 in Figure 3-4 are ignored,;
no external strobes or select signals are generated when the 8051 executes a MOVX
instruction that addresses these regions.

3.4 CS# and OE# Signals

The EZ-USB core automatically gates the standard 8051 RD# and WR# signals to exclude
selection of external memory that exists internal to the EZ-USB part. The PSEN# signal is
also available on a pin for connection to external code memory.

Some 8051 systems implement external memory that is used as both data and program
memory. These systems must logically OR the PSEN# and RD# signals to qualify the
chip enable and output enable signals of the external memory. To save this logic, the EZ-
USB core provides two additional control signals, CS# and OE#. The equations for these
signals are as follows:

* CS# = RD# or WR# or PSEN#
* OE# = RD# or PSEN#

Because the RD#, WR#, and PSEN# signals are already qualified by the addresses allo-
cated to external memory, these strobes are active only when external memory is accessed.

EZ-USB TRM v1.9 Chapter 3. EZ-USB Memory Page 3-5

i Inside EZ-USB Outside EZ-USB
External
Data
Memory
(RD,WR)
External
8000 M(e:%doery
Registers(RD,WR Note 1
External
Data
Memory
(RD, WR)
2000
1FFF
1F3F Unused Bulk Buffers
1840 (RD,WR) (Note 1)
Data (RD,WR)
0000

Note 1: OK to populate data memory here--RD#, WR#, CS# and OE# are inactive.

Figure 3-5. EZ-USB Memory Map with EA=1

When EA=1 (Figure 3-5), all code (PSEN) memory is external. All internal EZ-USB
RAM is data memory. This gives the user over 6-KB of general-purpose RAM, accessible

by the MOVX instruction.

Note

Figures 3-4 and 3-5 assume that the EZ-USB chip uses isochronous endpoints, ar
fore that the ISODISAB bit (ISOCTL.0) is LO. If ISODISAB=1, additional data RAI
appears internally at 0x2000-0x27FF, and the RD#, WR#, CS#, and OE# signals &

1d there-
M
Are

modified to exclude this memory space from external data memory.

Page 3-6 Chapter 3. EZ-USB Memory EZ-USB TRM v1.9

3.5 EZ-USB ROM Versions

The EZ-USB 8-KB Masked ROM and 32-KB Masked ROM memory maps are shown in
Figures 3-6 and 3-7.

Inside EZ-USB Outside EZ-USB
FFFF
External
Data
Memory
(RD,WR)
External
Code
Memory
8000 - (PSEN)
Registers(RD,WR) (Note 1)
7B40
External
Data
Memory
(RD, WR)
2000
Internal Code
83}0:’0: Memory(PSEN) (Note 2)
0000 Data (RD,WR) | (Note 1)

Note 1: OK to populate data memory here, but no RD# or WR# strobes are generated.
Note 2: OK to populate code memory here, but no PSEN# strobe is generated.

Figure 3-6. 8-KB ROM, 2-KB RAM Version

EZ-USB ROM versions contain program memory starting at 0x0000. In these versions,
the internal RAM is implemented as data-only memory.

Code for this ROM version can be developed and tested using the AN2131Q with an
external code memory (EA=1, Figure 3-5). As long as the 8051 limits internal RAM
access to 0x0000-0x07FF and accesses the EZ-USB registers and bulk data at 0x7B40-
Ox7FFF, the code in the external memory will be the identical image of the code that will
ultimately be internal at 0x0000-0x1FFF in the ROM version.

EZ-USB TRM v1.9 Chapter 3. EZ-USB Memory Page 3-7

Inside EZ-USB Outside EZ-USB
FFFF
External External
Data Code
Memory Memory
(RD,WR) (PSEN)
8000
TFFF Registers(RD,WR) (Note 1)
7B40
External
Internal Code Data
Memory(PSEN) Memory (Note 2)
(RD, WR)
1000
OFFF
Data (RD,WR) (Note 1)
0000

Note 1: OK to populate data memory here, but no RD# or WR# strobes are generated.
Note 2: OK to populate code memory here, but no PSEN# strobe is generated.

Figure 3-7. 32-KB ROM, 4-KB RAM Version

The EZ-USB 32-KB ROM version contains program memory from 0x0000 through
O0x7FFF, and data memory from 0x0000 through OxOFFF.

Code for this ROM version can be developed and tested using the AN2131Q with an
external code memory (EA=1, Figure 3-5). As long as the 8051 limits internal RAM
access to 0x0000-0xOFFF and accesses the EZ-USB registers and bulk data at 0x7B40-
Ox7FFF, the code in the external memory will be the identical image of the code that will
ultimately be internal at 0x0000-0x7FFF in the ROM version.

Page 3-8 Chapter 3. EZ-USB Memory EZ-USB TRM v1.9

4 EZ-USB Input/Output

4.1 Introduction

The EZ-USB chip provides two input-output systems:
* A set of programmable IO pins
e A programmable3C Controller
This chapter begins with a description of the programmable 10 pins, and shows how they

are shared by a variety of 8051 and EZ-USB alternate functions such as UART, timer and
interrupt signals.

The PC controller uses the SCL and SDA pins, and performs two functions:

» General-purpose 8051 use

* Boot loading from an EEPROM

Note
2.2-KB to 4.7-KB pullups are required on the SDA and SCL lines.

This chapter describes both the programming information for the 8@Gihterface, and

the operating details of théQ boot loader. The role of the boot loader is described in
Chapter 5, "EZ-USB Enumeration and ReNumerdiidn

EZ-USB TRM v1.9 Chapter 4. EZ-USB CPU Page 4-1

4.2 1O Ports

Coe |

ouT reg

PINS I

Figure 4-1. EZ-USB Input/Output Pin

The EZ-USB family implements its 10 ports using memory-mapped registers. This is in
contrast to a standard, which uses SFR bits for input/output.

Figure 4-1 shows the basic structure of an EZ-USB 10 pin. Twenty-four 10 pins are
grouped into three 8-bit ports named PORTA, PORTB, and PORTC. The AN2131Q has
all three ports, while the AN2131S has PORTB, PORTC, and two PORTA bits. The 8051
accesses |O pins using the three control bits shown in Figure 4-1: OE, OUT, and PINS.
The OUT bit writes output data to a register, the OE bit turns on the output buffer, and the
PINS bit indicates the state of the pin.

To configure a pin as an input, the 8051 sets OE=0 to turn off the output buffer. To config-
ure a pin as an output, the 8051 sets OE=1 to turn on the output buffer, and writes data to
the OUT register. The PINS bit reflects the actual pin value regardless of the value of OE.

A fourth control bit (in PORTACFG, PORTBCFG, PORTCCFG registers) determines
whether a port pin is general-purpose Input/Output (GPIO) as shown in Figure 4-1, or
connected to an alternate 8051 or EZ-USB function. Table 4-1 lists the alternate functions
available on the 10 pins. Figure 4-1 shows the registers and bits associated with the 10
ports.

Page 4-2 Chapter 4. EZ-USB CPU EZ-USB TRM v1.9

Table 4-1. 10 Pin Functions for PORTXCFG=0 and PORTXCFG=1

PORIXCe PORTXCFG bit = 1
Signal Signal Direction Description Figure
PAO TOOUT ouT Timer 0 Overflow Pulse 4-2
PA1 T10UT ouT Timer 1 Overflow Pulse 4-2
PA2 OE# ouT EZ-USB Output Enable 4-2
PA3 CS# ouT EZ-USB Chip Select 4-2
PA4 FWR# ouT EZ-USB Fast Write Strobe 4-2
PAS FRD# ouT EZ-USB Fast Read Strobe 4-2
PA6 RxDOOUT ouT UARTO Mode 0 Data Out 4-2
PA7 RxD10OUT ouT UART1 Mode 0 Data Out 4-2
PBO T2 IN Timer 2 Clock Input 4-3
PB1 T2EX IN Timer 2 Capture/Reload 4-3
PB2 RxD1 IN UART1 Receive Data 4-3
PB3 TxD1 ouT UART1 Transmit Data 4-2
PB4 INT4 IN Interrupt 4 4-3
PB5 INTS IN Interrupt 5 4-3
PB6 INT6 IN Interrupt 6 4-3
PB7 T20UT ouT Timer 2 Overflow Pulse 4-2
PCO RxDO IN UARTO Receive Data 4-3
PC1 TxDO ouT UARTO Transmit Data 4-2
PC2 INTO# IN Interrupt 0 4-3
PC3 INT1# IN Interrupt 1 4-3
PC4 TO IN Timer 0 Clock Input 4-3
PC5 T1 IN Timer 1 Clock Input 4-3
PC6 WR# ouT Write Strobe 4-2
PC7 RD# ouT Read Strobe 4-2

Depending on whether the alternate function is an input or output, the 10 logic is slightly
different, as shown in Figure 4-2 (output) and Figure 4-3 (input). The last column of
Table 4-1 indicates which figure applies to each pin.

EZ-USB TRM v1.9 Chapter 4. EZ-USB CPU Page 4-3

‘ Alternate Function Output H(| Alternate Function Output }—[>7

OE OE
‘
ouT reg ouT reg ‘a

PINS <]‘ PINS <‘]

PORTCFG=0 (port) PORTCFG=1 (alternate function)

&
185

Figure 4-2. Alternate Function is an OUTPUT

Referring to Figure 4-2, when PORTCFG=0, the 10 port is selected. In this case the alter-
nate function (shaded) is disconnected and the pin functions exactly as shown in

Figure 4-1. When PORTCFG=1, the alternate function is connected to the 10 pin and the
output register and buffer are disconnected. Note that the 8051 can still read the state of
the pin, and thus the alternate function value.

Alternate Function Input }—<F ‘ Alternate Function Input Mﬁ

OE
L
ouT reg {ﬁ— ouT reg ‘@
PINS <|l PINS <]I
PORTCFG=0 (port) PORTCFG=1 (alternate function)

Figure 4-3. Alternate Function is an INPUT

Referring to Figure 4-3, when PORTCFG=0, the IO port is selected. This is the general
IO port shown in Figure 4-1 with one important difference—the alternate function is
alwayslistening Whether the port pin is set for output or input, the pin signal also drives
the alternate function. 8051 firmware should ensure that if the alternate function is not
used (if the pin is GPIO only), the alternate input function is disabled.

For example, suppose the PB4/INT4 pin is configured for PB4. The pin signal is also
routed to INT4. If INT4 is not used by the application, it should not be enabled. Alterna-
tively, enabling INT4 could be useful, allowing 10 bit PB4 to trigger an interrupt.

When PORTXCFG=1, the alternate function is selected. The output register and buffer are

disconnected. The PINS bit can still read the pin, and thus the input to the alternate func-
tion.

Page 4-4 Chapter 4. EZ-USB CPU EZ-USB TRM v1.9

4.3 10 Port Registers

PORTACFG | RxD1lout RxDOout FRD FWR CS OE Tlout TOout

OUTA D7 D6 D5 D4 D3 D2 D1 DO

PINSA D7 D6 D5 D4 D3 D2 D1 DO

OEA D7 D6 D5 D4 D3 D2 D1 DO

PORTBCFG | T20UT INT6 INT5 INT4 TxD1 RxD1 T2EX T2

ouTB D7 D6 D5 D4 D3 D2 D1 DO

PINSB D7 D6 D5 D4 D3 D2 D1 DO

OEB D7 D6 D5 D4 D3 D2 D1 DO
PORTCCFG RD WR T1 TO INT1 INTO TDO RxDO

OuTC D7 D6 D5 D4 D3 D2 D1 DO

PINSC D7 D6 D5 D4 D3 D2 D1 DO

OEC D7 D6 D5 D4 D3 D2 D1 DO

Figure 4-4. Registers Associated with PORTS A, B, and C

Figure 4-4 shows the registers associated with the EZ-USB 10 ports. The power-on
default for the PORTCFG bits is 0, selecting the 10 port function. The power-on default
for the OE bits is 0, selecting the input direction.

EZ-USB TRM v1.9 Chapter 4. EZ-USB CPU Page 4-5

4.4 |2C Controller

The USB core contains ai@ controller for boot loading and general-purpo3€ bus

interface. This controller uses the SCL (Serial Clock) and SDA (Serial Data) pins. 12C
Controller describes how the boot load operates at power-on to read the contents of an
external serial EEPROM to determine the initial EZ-USB FX configuration. The boot
loader operates automatically, while the 8051 is held in reset. The last section of this chap-
ter describes the operating details of the boot loader.

After the boot sequence completes and the 8051 is brought out of reset, the general-pur-

pose PC controller is available to the 8051 for interface to exters@l devices, such as
other EEPROMS, 1/O chips, audio/video control chips, etc.

45 8051 EC Controller

start stop
SDA D7><D6><D5><D4><D3><D2><Dl><DO><AC_K

SCL 1 2 3 4 5 6 7 8 9

Figure 4-5. General iC Transfer

Figure 4-5 illustrates the waveforms for aCltransfer. SCL and SDA are open-drain EZ-
USB pins, which must be pulled up to Vcc with external resistors. The EZ-USB chip is an

| 2C bus master only, meaning that it synchronizes data transfers by generating clock
pulses on SCL by driving low. Once the master drives SCL low, external slave devices can
also drive SCL low to extend clock cycle times.

To synchronizeiC data, serial data (SDA) is permitted to change state only while SCL is
low, and must be valid while SCL is high. Two exceptions to this rule are used to generate
START and STOP conditions. A START condition is defined as SDA going low, while
SCLis high, and a STOP condition is defined as SDA going high, while SCL is high. Data
is sent MSB first. During the last bit time (clock #9 in Figure 4-5), the master (EZ-USB)
floats the SDA line to allow the slave to acknowledge the transfer by pulling SDA low.

Page 4-6 Chapter 4. EZ-USB CPU EZ-USB TRM v1.9

Multiple 1 2C Bus Masters—The EZ-USB chip acts only as afAd bus master,
never a slave. However, the 8051 can detect a second master by checking for
BERR=1 (Section 4.7, "Status Bits").

start

SDA SA3 >< SA2 >< SAL >< SAO >< DA2 >< DA1 >< DAO RW \ ACK D7 D6

SCL 1 2 3 4 5 6 7 8 9 10 11

Figure 4-6. Addressing arfC Peripheral

The first byte of an 4C bus transaction contains the address of the desired peripheral.
Figure 4-7 shows the format for this first byte, which is sometimes caltszh&rol byte.

A master sends the bit sequence shown in Figure 4-6 after sending a START condition.
The master uses this 9-bit sequence to select@ipeéripheral at a particular address, to
establish the transfer direction (using R/W#), and to determine if the peripheral is present
by testing for ACK#.

The four most significant bits SA3-SAQ are the peripheral chip’s slave addri&3s. |

devices are pre-assigned slave addresses by device type, for example slave address 1010 is
assigned to EEPROMS. The three bits DA2-DAO usually reflect the staté€ olievice

address pins. Devices with three address pins can be strapped to allow eight distinct
addresses for the same device type. The eighth bit (R/W#) sets the direction for the ensu-
ing data transfer, 1 for master read, and O for master write. Most address transfers are fol-
lowed by one or more data transfers, with the STOP condition generated after the last data
byte is transferred.

In Figure 4-6, a READ transfer follows the address byte (at clock 8, the master sets the R/
WH# bit high, indicating READ). At clock 9, the peripheral device responds to its address
by asserting ACK. At clock 10, the master floats SDA and issues SCL pulses to clock in
SDA data supplied by this slave.

Assuming the 12-MHz crystal used by the EZ-USB family, the SCL frequency is 90.9
KHz, giving an PC transfer rate of 11 ms per bit.

EZ-USB TRM v1.9 Chapter 4. EZ-USB CPU Page 4-7

12CS 12C Control and Status TFAS

| b7 b6 b5 b4 b3 b2 bl bo |
I START STOP LASTRD ID1 IDO BERR ACK DONE I
I2DAT I2C Data TFAG
| b7 b6 b5 b4 b3 b2 bl bo |
I D7 D6 D5 D4 D3 D2 D1 DO I

Figure 4-7. FC Registers

The 8051 uses the two registers shown in Figure 4-7 to conélD¢tdnsfers. The 8051
transfers data to and from th& bus by writing and reading the I2DAT register. The

12CS register control$C transfers and reports various status conditions. The three con-
trol bits are START, STOP, and LASTRD. The remaining bits are status bits. Writing to a
status bit has no effect.

4.6 Control Bits

46.1 START

The 8051 sets the START bit to 1 to prepare # lbus transfer. If START=1, the next
8051 load to I2DAT will generate the start condition followed by the serialized byte of
data in I2DAT. The 8051 loads data in the format shown in Figure 4-5 after setting the
START bit. The PC controller clears the START bit during the ACK interval (clock 9 in
Figure 4-5).

46.2 STOP

The 8051 sets STOP=1 to terminate &2 bus transfer. TheC controller clears the

STOP bit after completing the STOP condition. If the 8051 sets the STOP bit during a
byte transfer, the STOP condition will be generated immediately following the ACK phase
of the byte transfer. If no byte transfer is occurring when the STOP bit is set, the STOP
condition will be carried out immediately on the bus. Data should not be written to 12CS

Page 4-8 Chapter 4. EZ-USB CPU EZ-USB TRM v1.9

or I2DAT until the STOP bit returns low. In the 2122/2126 only, an interrupt request is
available to signal that STOP bit transmission is complete.

4.6.3 LASTRD

To read data over théQ bus, aniC master floats the SDA line and issues clock pulses on
the SCL line. After every eight bits, the master drives SDA low for one clock to indicate
ACK. To signal the last byte of the read transfer, the master floats SDA at ACK time to
instruct the slave to stop sending. This is controlled by the 8051 by setting LASTRD=1
before reading the last byte of a read transfer. P@ecbntroller clears the LASTRD bit at
the end of the transfer (at ACK time).

Note

Setting LASTRD does not automatically generate a STOP condition. The 8051 should
also set the STOP bit at the end of a read transfer.

4.7 Status Bits

After a byte transfer the EZ-USB controller updates the three status bits BERR, ACK, and
DONE. If no STOP condition was transmitted, they are updated at ACK time. Ifa STOP
condition was transmitted they are updated after the STOP condition is transmitted.

4.7.1 DONE

The PC controller sets this bit whenever it completes a byte transfer, right after the ACK
stage. The controller also generates#hihterrupt request (8051 INT3) when it sets the
DONE bit. The ¥C controller clears the DONE bit when the 8051 reads or writes the

I2DAT register, and the’C interrupt request bit whenever the 8051 reads or writes the
I2CS or I2DAT register.

4.7.2 ACK

Every ninth SCL of a write transfer, the slave indicates reception of the byte by asserting
ACK. The EZ-USB controller floats SDA during this time, samples the SDA line, and
updates the ACK bit with the complement of the detected value. ACK=1 indicates
acknowledge, and ACK=0 indicates not-acknowledge. The EZ-USB core updates the

EZ-USB TRM v1.9 Chapter 4. EZ-USB CPU Page 4-9

ACK bit at the same time it sets DONE=1. The ACK bit should be ignored for read trans-
fers on the bus.

4.7.3 BERR

This bit indicates an’C bus error. BERR=1 indicates that there was bus contention,
which results when an outside device drives the bus LO when it shouldn’t, or when
another bus master wins arbitration, taking control of the bus. BERR is cleared when the
8051 reads or writes the 12DAT register.

4.7.4 D1, 1D0O

These bits are set by the boot loader (Section 4.2Q, Boot Loader") to indicate whether

an 8-bit address or 16-bit address EEPROM at slave address 000 or 001 was detected at
power-on. They are normally used only for debug purposes. Table 4-3 shows the encod-
ing for these bits.

4.8 Sending ¥C Data

To send a multiple byte data record over th@ bus, follow these steps:

1. Setthe START bit.

2. Write the peripheral address and direction=0 (for write) to I2DAT.

3. Wait for DONE=1*. If BERR=1 or ACK=0, go to step 7.

4. Load I2DAT with a data byte.

5. Wait for DONE=1*. If BERR=1 or ACK=0 go to step 7.

6. Repeat steps 4 and 5 for each byte until all bytes have been transferred.

7. Set STOP=1.

* If the 12C interrupt (8051 INT3) is enabled, each “Wait for DONE=1" step can be inter-
rupt driven, and handled by an interrupt service routine. See Section Tanter-
rupt” for more details regarding théQ interrupt.

Page 4-10 Chapter 4. EZ-USB CPU EZ-USB TRM v1.9

4.9

Receiving 1C Data

To read a multiple-byte data record, follow these steps:

1.

2.

Set the START bit.
Write the peripheral address and direction=1 (for read) to 12DAT.
Wait for DONE=1*. If BERR=1 or ACK=0, terminate by setting STOP=1.

Read I2DAT and discard the data. This initiates the first burst of nine SCL pulses
to clock in the first byte from the slave.

Wait for DONE=1*. If BERR=1, terminate by setting STOP=1.

Read the data from I12DAT. This initiates another read transfer.

Repeat steps 5 and 6 for each byte until ready to read the second-to-last byte.
Before reading the second-to-last I2DAT byte, set LASTRD=1.

Read the data from I2DAT. With LASTRD=1, this initiates the final byte read on
the PC bus.

10. Wait for DONE=1*. If BERR=1, terminate by setting STOP=1.

11. Set STOP=1.

12. Read the last byte from I2DAT immediately (the next instruction) after setting the

STOP bit. This retrieves the last data byte without initiating an extra read transac-
tion (nine more SCL pulses) on th&Cl bus.

* If the 12C interrupt (8051 INT3) is enabled, each “Wait for DONE=1" step can be inter-
rupt-driven, and handled by an interrupt service routing. See Section Canter-
rupt” for more details regarding théQ interrupt.

EZ-USB TRM v1.9 Chapter 4. EZ-USB CPU Page 4-11

4.10 [PC Boot Loader

When the EZ-USB chip comes out of reset, the EZ-USB boot loader checks for the pres-
ence of an EEPROM on itdC bus. If an EEPROM is detected, the loader reads the first
EEPROM byte to determine how to enumerate (specifically, whether to supply ID infor-
mation from the EZ-USB core or from the EEPROM). The various enumeration modes
are described in Chapter 5, "EZ-USB Enumeration and ReNumelration

Prior to reading the first EEPROM byte, the boot loader must set an address counter inside
the EEPROM to zero. It does this by sending a control byte (write) to select the
EEPROM, followed by a zero address to set the internal EEPROM address pointer to zero.
Then it issues a control byte (read), and reads the first EEPROM byte.

The EZ-USB boot loader supports twiCl EEPROM types:

* EEPROMSs with address A[7..4]=1010 that use an 8-bit address (example:
24L.C00, LCO1/A, LCO2/A).

 EEPROMSs with address A[7..4]=1010 that use a 16-bit address (example:
24L.C00, LCO1/A, LCO2/A).

EEPROMs with densities up to 256 bytes require loading a single address byte. Larger
EEPROMs require loading two address bytes.

The EZ-USB tC controller needs to determine which EEPROM type is connected—one
or two address bytes—so that it can properly reset the EEPROM address pointer to zero
before reading the EEPROM. For the single-byte address part, it must send a single zero
byte of address, and for the two-byte address part it must send two zero bytes of address.

Because there is no direct way to detect which EEPROM type—single or double
address—is connected, th€Icontroller uses the EEPROM address pins A2, A1, and A0

to determine whether to send out one or two bytes of address. This algorithm requires that
the EEPROM address lines are strapped as shown in Table 4-2. Single-byte-address
EEPROMs are strapped to address 000 and double-byte-address EEPROMSs are strapped
to address 001.

Page 4-12 Chapter 4. EZ-USB CPU EZ-USB TRM v1.9

Table 4-2. Strap Boot EEPROM Address Lines to These Values

Bytes Eéﬁ’;g"\j A2 Al A0
16 | 24L.C00* | NAA NIA NIA
128 | 24.C01 | 0 0 0
256 | 24LC02 | 0 0 0
4K | 24.C32 | 0 0 1
8K | 24LC64 | 0 0 1

* This EEPROM does not have address pins

The PC controller performs a three-step test at power-on to determine whether a one-byte-
address or a two-byte-address EEPROM is attached. This test proceeds as follows:

1. The FC controller sends out a “read current address” commaniteub-address
000 (10100001). If no ACK is returned, the controller proceeds to step 2. If ACK
is returned, the one-byte-address device is indicated. The controller discards the
data and proceeds to step 3.

2. The FC controller sends out a “read current address” commamteub-address
001 (10100011). If ACK is returned, the two-byte-address device is indicated.
The controller discards the data and proceeds to step 3. If no ACK is returned, the
controller assumes that a valid EEPROM is not connected, assumes the “No Serial
EEPROM” mode, and terminates the boot load.

3. The PC controller resets the EEPROM address pointer to zero (using the appropri-
ate number of address bytes), then reads the first EEPROM byte. If it does not
read OxBO or 0xB2, the controller assumes the “No Serial EEPROM” mode. If it
reads either OxBO or 0xB2, the controller copies the next six bytes into internal
storage, and if it reads 0xB2, it proceeds to load the EEPROM contents into inter-
nal RAM.

EZ-USB TRM v1.9 Chapter 4. EZ-USB CPU Page 4-13

The results of this power-on test are reported in the ID1 and IDO bits, as shown in
Table 4-3.

Table 4-3. Results of Power-Of Test

ID1 IDO Meaning

0 0 No EEPROM detected

0 1 One-byte-address load EEPROM detected
1 0 Two-byte-address load EEPROM detected
1 1 Not used

Other EEPROM devices (with device address of 1010) can be attached € thed for

general purpose 8051 use, as long as they are strapped for address other than 000 or 001.
If a 24LC00 EEPROM is used, no other EEPROMS with device address 1010 may be
used, because the 24LCO0O0 responds to all eight sub-addresses.

Page 4-14 Chapter 4. EZ-USB CPU EZ-USB TRM v1.9

5 EZ-USB Enumeration and ReNumeratior]

51 Introduction

The EZ-USB chip isoft 8051 code and data is stored in internal RAM, which is loaded
from the host using the USB interface. Peripheral devices that use the EZ-USB chip can
operate without ROM, EPROM, or FLASH memory, shortening production lead times
and making firmware updates a breeze.

To support the soft feature, the EZ-USB chip automatically enumerates as a USB device
without firmware so the USB interface itself may be used to download 8051 code and
descriptor tables. The EZ-USB core performs this initial (power-on) enumeration and
code download while the 8051 is held in reset. This initial USB device, which supports
code download, is called the “Default USB Device.”

After the code descriptor tables have been downloaded from the host to EZ-USB RAM,
the 8051 is brought out of reset and begins executing the device code. The EZ-USB
device enumerates again, this time as the loaded device. This second enumeration is
called “ReNumeration,” which the EZ-USB chip accomplishes by electrically simulat-
ing a physical disconnection and re-connection to the USB.

An EZ-USB control bit called “ReNum” (ReNumerated) determines which entity, the core
or the 8051, handles device requests over endpoint zero. At power-on, the RENUM bit
(USBCS.1) is zero, indicating that the EZ-USB core automatically handles device
requests. Once the 8051 is running, it can set ReNum=1 to indicate that user 8051 code
handles subsequent device requests using its downloaded firmware. Chapter 7, "EZ-USB
Endpoint Zero" describes how the 8051 handles device requests while ReNum=1.

It is also possible for the 8051 to run with ReNum=0 and have the EZ-USB core handle
certain endpoint zero requests (see the text box, “Another Use for the Default USB
Device” on page 5-2).

This chapter deals with the various EZ-USB startup modes, and describes the default USB
device that is created at initial enumeration.

EZ-USB TRM v1.9 Chapter 5. EZ-USB CPU Page 5-1

Another Use for the Default USB Device

The Default USB Device is established at power-on to set up a USB device capab
downloading firmware into EZ-USB RAM. Another useful feature of the EZ-USB
default device is that 8051 code can be written to support the already-configured G
USB device. Before bringing the 8051 out of reset, the EZ-USB core enables cert
endpoints and reports them to the host via descriptors. By utilizing the USB defauy
machine (by keeping ReNum=0), the 8051 can, with very little code, perform mean
USB transfers that use these default endpoints. This accelerates the USB learning
To see an example of how little code is actually necessary, take a look at Section ¢
"Polled Bulk Transfer Example."

le of

eneric

ain

It
ngful
curve.

5.11,

5.2 The Default USB Device

The Default USB Device consists of a single USB configuration containing one interface
(interface 0) with three alternate settings 0, 1, and 2. The endpoints reported for this
device are shown in Table 5-1. Note that alternate setting zero uses no interrupt or isoch-

ronous bandwidth, as recommended by the USB Specification.

Table 5-1. EZ-USB Default Endpoints

Endpoint Type Alternate Setting
0 ‘ 1 ‘ 2
Maximum Packet Size (Bytes)

0 CTL 64 64 64
1-IN INT 0 16 64
2-IN BULK 0 64 64
2-0UT BULK 0 64 64
4-IN BULK 0 64 64
4-0UT BULK 0 64 64
6-IN BULK 0 64 64
6-OUT BULK 0 64 64
8-IN ISO 0 16 256
8-0UT ISO 0 16 256
9-IN ISO 0 16 16
9-OUT ISO 0 16 16
10-IN ISO 0 16 16
10 OUT ISO 0 16 16

Page 5-2 Chapter 5. EZ-USB CPU EZ-USB TRM v1.9

For purposes of downloading 8051 code, the Default USB Device requires only CON-
TROL endpoint zero. Nevertheless, the USB default machine is enhanced to support
other endpoints as shown in Figure 5-1 (note the alternate settings 1 and 2). This enhance-
ment is provided to allow the developer to get a head start generating USB traffic and
learning the USB system. All the descriptors are automatically handled by the EZ-USB
core, so the developer can immediately start writing code to transfer data over USB using
these pre-configured endpoints.

When the EZ-USB core establishes the Default USB Device, it also sets the proper end-
point configuration bits to match the descriptor data supplied by the EZ-USB core. For
example, bulk endpoints 2, 4, and 6 are implemented in the Default USB Device, so the
EZ-USB core sets the corresponding EPVAL bits. Chapter 6, “EZ-Bulk Transfers” con-
tains a detailed explanation of the EPVAL bits.

Tables 5-9 through 5-13 show the various descriptors returned to the host by the EZ-USB
core when ReNum=0. These tables describe the USB endpoints defined in Table 5-1,
along with other USB details, and should be useful to help understand the structure of
USB descriptors.

EZ-USB TRM v1.9 Chapter 5. EZ-USB CPU Page 5-3

5.3 EZ-USB Core Response to EPO Device Requests

Table 5-2 shows how the EZ-USB core responds to endpoint zero requests when

ReNum=0.

bRequest Name

Action: ReNum=0

0x00 Get Status/Device

Returns two zero bytes

0x00 Get Status/Endpoint

Supplies EP Stall bit for indicated EP

0x00 Get Status/Interface

Returns two zero bytes

0x01 Clear Feature/Device

None

0x01 Clear Feature/Endpoint

Clears Stall bit for indicated EP

0x02 (reserved)

None

0x03 Set Feature/Device

None

0x03 Set Feature Endpoint

Sets Stall bit for indicated EP

0x04 (reserved)

None

0x05 Set Address

Updates FNADD register

0x06 Get Descriptor

Supplies internal table

0x07 Set Descriptor

None

0x08 Get Configuration

Returns internal value

0x09 Set Configuration

Sets internal value

0x0A Get Interface

Returns internal value (0-3)

0x0B Set Interface

Sets internal value (0-3)

0x0C Sync Frame

None

Vendor Requests

0x0A Firmware Load

Upload/Download RAM

0xA1-0xAF | Reserved

Reserved by Cypress Semiconductor

all other

None

The USB host enumerates by issuing:

e Set Address

» Get_Descriptor

» Set_Configuration (to 1)

Page 5-4

Chapter 5. EZ-USB CPU

Table 5-2. How the EZ-USB Core Handles EPO Requests When ReNum=0

EZ-USB TRM v1.9

As shown in Table 5-2, after enumeration, the EZ-USB core responds to the following
host requests.

» Setor clear an endpoint stall (Set/Clear Feature-Endpoint).

* Read the stall status for an endpoint (Get_Status_Endpoint).

* Set/Read an 8-bit configuration number (Set/Get_Configuration).
» Set/Read a 2-bit interface alternate setting (Set/Get_Interface).

* Download or upload 8051 RAM.

To ensure proper operation of the default Keil Monitor, which uses SIO-1 (RXD1 and
TXD1), never change the following Port Config bits from “1":

« PORTBCFG bits 2 (RXD1) and 3 (TXD1).

To ensure the 8051 processor can access the external SRAM (including the Keil Monitor),
do not change the following bits from “1":

« PORTCCFG bits 6 (WR#) and 7 (RD#).

To ensure that no bits are unintentionally changed, all writes to the PORTXCFG registers
should use a read-modify-write series of instructions.

54 Firmware Load

The USB Specification provides feendor-specific requeste be sent over CONTROL
endpoint zero. The EZ-USB chip uses this feature to transfer data between the host and
EZ-USB RAM. The EZ-USB core responds to two “Firmware Load” requests, as shown
in Tables 5-3 and 5-4.

Table 5-3. Firmware Download

Byte Field Value Meaning 8051 Response
0 |bmRequest| 0x40 |Vendor Request, OUT | None required
1 | bRequest O0xAQ0 | “Firmware Load”

2 | wValueL AddrL | Starting Address
3 |wValueH AddrH
4 | windexL 0x00
5 | windexH 0x00
6 |wLenghtL LenL | Number of Bytes
7 | wLengthH LenH

EZ-USB TRM v1.9 Chapter 5. EZ-USB CPU Page 5-5

Table 5-4. Firmware Upload

Byte Field Value Meaning 8051 Response
0 |bmRequest| O0xCO |Vendor Request, IN None required
1 |bRequest O0XAO | “Firmware Load”

2 | wValuelL AddrL | Starting Address
3 |wValueH AddrH

4 | windexL 0x00

5 | windexH 0x00

6 |wLengthL LenL | Number of Bytes
7 | wLengthH LenH

These requests are always handled by the EZ-USB core (ReNum=0 or 1). This means that
OxAO isreservedoy the EZ-USB chip, and therefore should never be used for a vendor
request. Cypress Semiconductor also reserves bRequest values 0xAl through OXAF, so

your system should not use these bRequest values.

A host loader program typically writes Ox01 to the CPUCS register to put the 8051

into

RESET, loads all or part of the EZ-USB RAM with 8051 code, and finally reloads the

CPUCS register with 0 to take the 8051 out of RESET. The CPUCS register is the
USB registerthat can be written using the Firmware Download command.

Firmware loads are restricted to internal EZ-USB memory.

only

When ReNum=1 at Power-On

requests over CONTROL endpoint zero. This allows the core to download 8051 f
ware and then reconnect as the target device.

At power-on, the EZ-USB core checks th#€Ibus for the presence of an EEPROM. |
finds one, and the first byte of the EEPROM is 0xB2, the core copies the contents
EEPROM into internal RAM, sets the ReNum bit to 1, and un-RESETS the 8051.
8051 wakes up ready-to-run firmware in RAM. The required data form at for this |
module is described in the next section.

At power-on, the ReNum bit is normally set to zero so that the EZ-USB handles device

rm-

fit

of the
The
bad

Page 5-6 Chapter 5. EZ-USB CPU EZ-USB TRM v1.9

55 Enumeration Modes

When the EZ-USB chip comes out of reset, the EZ-USB core makes a decision about how

to enumerate based on the contents of an external EEPROM &8 itsi$. Table 5-5
shows the choices. In Table 5-5, PID means Product ID, VID means Version ID, and DID
means Device ID.

Table 5-5. EZ-USB Core Action at Power-Up

First EEPROM byte EZ-USB Core Action

Not 0xBO or 0xB2 Supplies descriptors, PID/VID/DID from EZ-USB
Core. Sets ReNum=0.

0xBO Supplies descriptors from EZ-USB core, PID/VID/DID
from EEPROM. Sets ReNum=0.
0xB2 Loads EEPROM into EZ-USB RAM. Sets ReNum=1;

therefore 8051 supplies descriptors, PID/VID/DID.

If no EEPROM is present, or if one is present but the first byte is neither 0xBO nor 0xB2,
the EZ-USB core enumerates using internally stored descriptor data, which contains the
Cypress Semiconductor VID, PID, and DID. These ID bytes cause the host operating sys-
tem to load a Cypress Semiconductor device driver. The EZ-USB core also establishes the
Default USB deviceThis mode is only used for code development and debug.

If a serial EEPROM is attached to th#Clbus and its first byte is 0xBO, the EZ-USB core
enumerates with the same internally stored descriptor data as for the no-EEPROM case,
but with one difference. It supplies the PID/VID/DID data from six bytes in the external
EEPROM rather than from the EZ-USB core. The custom VID/PID/DID in the EEPROM
causes the host operating system to load a device driver that is matched to the EEPROM
VID/PID/DID. This EZ-USB operating mode providesaftUSB device using ReNu-
meration].

If a serial EEPROM is attached to th#€lbus and its first byte is 0xB2, the EZ-USB core
transfers the contents of the EEPROM into internal RAM. The EZ-USB core also sets the
ReNum bit to 1 to indicate that the 8051 (and not the EZ-USB core) responds to device
requests over CONTROL endpoint zero (see the text box, “When ReNum=1 at Power-
On” on page 5-6). Therefore, all descriptor data, including VID/DID/PID values, are sup-
plied by the 8051 firmware. The last byte loaded from the EEPROM (to the CPUCS reg-
ister) releases the 8051 reset signal, allowing the EZ-USB chip to come up as a fully
custom device with firmware in RAM.

The following sections discuss these enumeration methods in detail.

EZ-USB TRM v1.9 Chapter 5. EZ-USB CPU Page 5-7

The Other Half of the PC Story

The EZ-USB tC controller serves two purposes. First, as described in this chapte, it
manages the serial EEPROM interface that operates automatically at power-on to deter-
mine the enumeration method. Second, once the 8051 is up and running, the 8051 can
access the’C controller for general-purpose use. This makes a wide range of standard
I2C peripherals available to an EZ-USB system.

Other PC devices can be attached to the SCL and SDA lines oftbéls as long as
there is no address conflict with the serial EEPROM described in this chapter. Chapter 4,

"EZ-USB Input/Output" describes the general-purpose nature of@hinterface.

5.6 No Serial EEPROM

In the simplest case, no serial EEPROM is present or*théulis, or an EEPROM is

present but its first byte is not 0xBO or OxB2. In this case, descriptor data is supplied by a
table internal to the EZ-USB core. The EZ-USB chip comes on agl8& Default

Device with the ID bytes shown in Table 5-6.

Table 5-6. EZ-USB Device Characteristics, No Serial EEPROM

Vendor ID 0x0547 (Cypress Semiconductor)
Product ID 0x2131 (EZ-USB)

Device Release | 0xXXXYY (depends on revision)

The USB host queries the device during enumeration, reads the device descriptor, and uses
the Table 5-6 bytes to determine which software driver to load into the operating system.
This is a major USB feature—drivers are dynamically matched with devices and automat-
ically loaded when a device is plugged in.

The no_EEPROM case is the simplest configuration, but also the most limiting. This

mode is used only for code development, utilizing Cypress software tools matched to the
ID values in Table 5-6.

Page 5-8 Chapter 5. EZ-USB CPU EZ-USB TRM v1.9

Reminder

The EZ-USB core uses the Table 5-6 data for enumeration only if the ReNum bit is|zero.
If ReNum=1, enumeration data is supplied by 8051 code.

5.7 Serial EEPROM Present, First Byte is 0xBO

Table 5-7. EEPROM Data Format for “B0” Load

EEPROM
Address

0 0xBO
1 Vendor ID (VID) L
2 Vendor ID (VID) H
3 Product ID (PID) L
4 Product ID (PID) H
5
6
7

Contents

Device ID (DID) L
Device ID (DID) H
Not used

If, at power-on, the EZ-USB core detects an EEPROM connected #€itsdrt with the
valueOxBOat address 0, the EZ-USB core copies the Vendor ID (VID), Product ID (PID),
and Device ID (DID) from the EEPROM (Table 5-7) into internal storage. The EZ-USB
core then supplies these bytes to the host as part of the Get_Descriptor-Device request.
(These six bytes replace only the VID/PID/DID bytes in the default USB device descrip-
tor.) This causes a driver matched to the VID/PID/DID values in the EEPROM, instead of
those in the EZ-USB core, to be loaded into the OS.

After initial enumeration, the driver downloads 8051 code and USB descriptor data into
EZ-USB RAM and starts the 8051. The code then ReNumeratesome on as the fully
custom device.

A recommended EEPROM for this application is the Microchip 24LCO00, a small (5-pin
SOT package) inexpensive 16-byte serial EEPROM. A 24LCO01 (128 bytes) or 24LC02
(256 bytes) may be substituted for the 24LCO0O, but as with the 24LCO0O, only the first
seven bytes are used.

EZ-USB TRM v1.9 Chapter 5. EZ-USB CPU Page 5-9

5.8 Serial EEPROM Present, First Byte is 0xB2

If, at power-on, the EZ-USB core detects an EEPROM connected #€ifgdrt with the
valueOxB2 at address 0; the EZ-USB core loads the EEPROM data into EZ-USB RAM.

It also sets the ReNum bit to 1, causing device requests to be fielded by the 8051 instead of
the EZ-USB core. The EEPROM data format is shown in Table 5-8.

Table 5-8. EEPROM Data Format for “B2” Load

EEPROM

ntent
Address Gl

0xB2

Vendor ID (VID) L
Vendor ID (VID) H
Product ID (PID) L
Product ID (PID) H
Device ID (DID) L
Device ID (DID) H
Length H

Length L
StartAddr H
StartAddr L

Data block

©O©| O N O O | W| N | O

[
o

Length H
Length L
StartAddr H
StartAddr L
Data block

0x80
0x01
0x7F
0x92

Last 00000000

The first byte tells the EZ-USB core to copy EEPROM data into RAM. The next six bytes
(1-6) are ignored (see the text box, “VID/PID/DID in a “B2” EEPROM” on page 5-11).

Page 5-10 Chapter 5. EZ-USB CPU EZ-USB TRM v1.9

One or more data records follow, starting at EEPROM address 7. The maximum value of
Length H is 0x03, allowing a maximum of 1,023 bytes per record. Each data record con-
sists of a length, a starting address, and a block of data bytes. The last data record must
have the MSB of its Length H byte setto 1. The last data record consists of a single-byte
load to the CPUCS register at 0x7F92. Only the LSB of this byte is significant—

8051RES (CPUCS.0) is set to zero to bring the 8051 out of reset.

Serial EEPROM data can be loaded into two EZ-USB RAM spaces only.

» 8051 program/data RAM at 0x0000-0x1B40.

* The CPUCS register at 0x7F92 (only bit 0, 8051 RESET, is host-loadable).

VID/PID/DID in a “B2” EEPROM

Bytes 1-6 of 8BB2 EEPROM can be loaded with VID/PID/DID bytes if it is desired at
some point to run the 8051 program with ReNum=0 (EZ-USB core handles device

requests), using the EEPROM VID/PID/DID rather than the Cypress Semiconductpr val-
ues built into the EZ-USB core.

5.9

ReNumerationl

Three EZ-USB control bits in the USBCS (USB Control and Status) register control the
ReNumeratiofl process: DISCON, DISCOE, and RENUM.

USBCS USB Control and Status 7FD6
b7 b6 b5 b4 b3 b2 bl b0
DISCON DISCOE RENUM
R/W R R/W R/W R/W R/W
0 0 0 0 0 1 0 0

EZ-USB TRM v1.9

Figure 5-1. USB Control and Status Register

Chapter 5. EZ-USB CPU

Page 5-11

Internal Logic

DISCON

DISCOE

Figure 5-2. Disconnect Pin Logic

DISCON#
pin

The logic for the DISCON and DISCOE bits is shown in Figure 5-2. To simulate a USB
disconnect, the 8051 writes the value 00001010 to USBCS. This floats the DISCON# pin,
and provides an internal DISCON signal to the USB core that causes it to perform discon-

nect housekeeping.

To re-connect to USB, the 8051 writes the value 00000110 to USBCS. This presents a
logic HI to the DISCON# pin, enables the output buffer, and sets the RENUM bit HI to
indicate that the 8051 (and not the USB core) is now in control for USB transfers. This
arrangement allows connecting the 1,500-ohm resistor directly between the DISCON# pin

and the USB D+ line (Figure 5-3).

1500

[
=y
i

VCC

D+
GND

USB-B

] {bw!\!

Figure 5-3. Typical Disconnect Circuit (DISCOE=1)

DISCON#

EZ-USB

Page 5-12 Chapter 5. EZ-USB CPU

EZ-USB TRM v1.9

5.10 Multiple ReNumerationsl

The 8051 can ReNumerateanytime. Once use for this capability might befitee tune
an isochronous endpoint’s bandwidth requests by trying various descriptor values and
ReNumerating.

5.11 Default Descriptor

Tables 5-9 through 5-19 show the descriptor data built into the EZ-USB core. The tables
are presented in the order that the bytes are stored.

Table 5-9. USB Default Device Descriptor

Offset Field Description Value
0 |bLength Length of this Descriptor = 18 bytes 12H
1 | bDescriptorType Descriptor Type = Device 01H
2 | bcdUSB (L) USB Specification Version 1.00 (L) 00H
3 | bcdUSB (H) USB Specification Version 1.00 (H) 01H
4 | bDeviceClass Device Class (FF is Vendor-Specific) FFH
5 | bDeviceSubClass Device Sub-Class (FF is Vendor-Specific) FFH
6 | bDeviceProtocol Device Protocol (FF is Vendor-Specific) FFH
7 bMaxPacketSize0 Maximum Packet Size for EPO = 64 bytes 40H
8 |idVendor (L) Vendor ID (L) Cypress Semiconductor = 0547H 47H
9 idVendor (H) Vendor ID (H) 05H
10 | idProduct (L) Product ID (L) EZ-USB = 2131H 31H
11 |idProduct (H) Product ID (H) 21H
12 | bedDevice (L) Device Release Number (BCD,L) (see individual data sheet) 21H
13 | bedDevice (H) Device Release Number (BCD,H) (see individual data sheet) YYH
14 | iManufacturer Manufacturer Index String = None 00H
15 | iProduct Product Index String = None 00H
16 | iSerialNumber Serial Number Index String = None 00H
17 | bNumConfigurations | Number of Configurations in this Interface = 1 01H

The Device Descriptor specifies a MaxPacketSize of 64 bytes for endpoint 0, contains
Cypress Semiconductor Vendor, Product and Release Number IDs, and uses no string
indices. Release Number IDEXandYY) are found in individual Cypress Semiconductor
data sheets. The EZ-USB core returns this information response to a “Get_Descriptor/
Device” host request.

EZ-USB TRM v1.9 Chapter 5. EZ-USB CPU Page 5-13

Table 5-10. USB Default Configuration Descriptor

Offset Field Description Value
0 |bLength Length of this Descriptor = 9 bytes 09H
1 | bDescriptorType Descriptor Type = Configuration 02H
2 | wTotalLength (L) Total Length (L) Including Interface and Endpoint Descriptors DAH
3 | wTotalLength (H) Total Length (H) 00H
4 | bNuminterfaces Number of Interfaces in this Configuration 01H
5 | bConfigurationValue | Configuration Value Used by Set_Configuration Request to 01H

Select this Configuration
6 |iConfiguration Index of String Describing this Configuration = None 00H
7 | bmAttributes Attributes - Bus-Powered, No Wakeup 80H
8 | MaxPower Maximum Power - 100 mA 32H

The configuration descriptor includes a total length field (offset 2-3) that encompasses all
interface and endpoint descriptors that follow the configuration descriptor. This configu-
ration describes a single interface (offset 4). The host selects this configuration by issuing

a Set_Configuration requests specifying configuration #1 (offset 5).

Table 5-11. USB Default Interface 0, Alternate Setting O Descriptor

Offset Field Description Value
0 |bLength Length of the Interface Descriptor 09H
1 | bDescriptorType Descriptor Type = Interface 04H
2 | binterfaceNumber Zero-based Index of this Interface = 0 O00H
3 | bAlternateSetting Alternate Setting Value = 0 00H
4 | bNumEndpoints Number of Endpoints in this Interface (Not Counting EPO) = 0 00H
5 | binterfaceClass Interface Class = Vendor Specific FFH
6 | binterfaceSubClass | Interface Sub-class = Vendor Specific FFH
7 | binterfaceProtocol Interface Protocol = Vendor Specific FFH
8 |ilnterface Index to String Descriptor for this Interface = None O0H

Interface 0, alternate setting O describes endpoint O only. Thizasssbandwidtlsetting.

The interface has no string index.

Page 5-14

Chapter 5. EZ-USB CPU

EZ-USB TRM v1.9

Table 5-12. USB Default Interface 0, Alternate Setting 1 Descriptor

Offset Field Description Value
0 |bLength Length of the Interface Descriptor 09H
1 | bDescriptorType Descriptor Type = Interface 04H
2 | binterfaceNumber Zero-based Index of this Interface = 0 O0H
3 | bAlternateSetting Alternate Setting Value = 1 01H
4 | bNumEndpoints Number of Endpoints in this Interface (Not Counting EPO) = 13 | ODH
5 | binterfaceClass Interface Class = Vendor Specific FFH
6 | binterfaceSubClass | Interface Sub-class = Vendor Specific FFH
7 binterfaceProtocol Interface Protocol = Vendor Specific FFH
8 |ilnterface Index to String Descriptor for this Interface = None 00H

Interface 0, alternate setting 1 has thirteen endpoints, whose individual descriptors follow
the interface descriptor. The alternate settings have no string indices.

Table 5-13. USB Default Interface 0, Alternate Setting 1, Interrupt Endpoint Descriptor

Offset Field Description Value
0 |bLength Length of this Endpoint Descriptor 07H
1 | bDescriptorType Descriptor Type = Endpoint 05H
2 | bEndpointAddress Endpoint Direction (1 is in) and Address = IN1 81H
3 | bmAttributes XFR Type = INT 03H
4 | wMaxPacketSize (L) | Maximum Packet Size = 16 Bytes 10H
5 | wMaxPacketSize (H) | Maximum Packet Size - High 00H
6 | binterval Polling Interval in Milliseconds = 10 ms 0AH

Interface 0, alternate setting 1 has one interrupt endpoint, IN1, which has a maximum

packet size of 16 and a polling interval of 10 ms.

EZ-USB TRM v1.9

Chapter 5. EZ-USB CPU

Table 5-14. USB Default Interface 0, Alternate Setting 1, Bulk Endpoint Descriptors

Offset Field Description Value
0 |bLength Length of this Endpoint Descriptor 07H
1 | bDescriptorType Descriptor Type = Endpoint 05H
2 | bEndpointAddress Endpoint Direction (1 is in) and Address = IN2 82H
3 | bmAttributes XFR Type = BULK 02H
4 | wMaxPacketSize (L) | Maximum Packet Size = 64 Bytes 40H
5 | wMaxPacketSize (H) | Maximum Packet Size - High 00H
6 binterval Polling Interval in Milliseconds (1 for iso) 00H
0 |bLength Length of this Endpoint Descriptor 07H
1 | bDescriptorType Descriptor Type = Endpoint 05H
2 | bEndpointAddress Endpoint Direction (1 is in) and Address = OUT2 02H
3 | bmAttributes XFR Type = BULK 02H
4 | wMaxPacketSize (L) | Maximum Packet Size = 64 Bytes 40H
5 | wMaxPacketSize (H) | Maximum Packet Size - High 00H
6 binterval Polling Interval in Milliseconds (1 for iso) 00H
0 |bLength Length of this Endpoint Descriptor 07H
1 | bDescriptorType Descriptor Type = Endpoint 05H
2 | bEndpointAddress Endpoint Direction (1 is in) and Address = IN4 84H
3 | bmAttributes XFR Type = BULK 02H
4 | wMaxPacketSize (L) | Maximum Packet Size = 64 Bytes 40H
5 | wMaxPacketSize (H) | Maximum Packet Size - High 00H
6 binterval Polling Interval in Milliseconds (1 for iso) 00H
0 |bLength Length of this Endpoint Descriptor 07H
1 | bDescriptorType Descriptor Type = Endpoint 05H
2 | bEndpointAddress Endpoint Direction (1 is in) and Address = OUT4 04H
3 | bmAttributes XFR Type = BULK 02H
4 | wMaxPacketSize (L) | Maximum Packet Size = 64 Bytes 40H
5 | wMaxPacketSize (H) | Maximum Packet Size - High 00H
6 | binterval Polling Interval in Milliseconds (1 for iso) 00H
0 [bLength Length of this Endpoint Descriptor 07H
1 | bDescriptorType Descriptor Type = Endpoint O5H
2 | bEndpointAddress Endpoint Direction (1 is in) and Address = IN6 86H
3 | bmAttributes XFR Type = BULK 02H
4 | wMaxPacketSize (L) | Maximum Packet Size = 64 Bytes 40H
5 | wMaxPacketSize (H) | Maximum Packet Size - High 00H
6 | binterval Polling Interval in Milliseconds (1 for iso) 00H

Page 5-16

Chapter 5. EZ-USB CPU

EZ-USB TRM v1.9

Table 5-14. USB Default Interface 0, Alternate Setting 1, Bulk Endpoint Descriptors

Offset Field Description Value
0 |bLength Length of this Endpoint Descriptor 07H
1 | bDescriptorType Descriptor Type = Endpoint 05H
2 | bEndpointAddress | Endpoint Direction (1 is in) and Address = OUT6 06H
3 | bmAttributes XFR Type = BULK 02H
4 | wMaxPacketSize (L) | Maximum Packet Size = 64 Bytes 40H
5 | wMaxPacketSize (H) | Maximum Packet Size - High 00H
6 | binterval Polling Interval in Milliseconds (1 for iso) 00H

Interface 0, alternate setting 1 has six bulk endpoints with max packet sizes of 64 bytes.
Even numbered endpoints were chosen to allow endpoint pairing. For more on endpoint
pairing, see Chapter 6, "EZ-USB Bulk Transfers."

EZ-USB TRM v1.9 Chapter 5. EZ-USB CPU Page 5-17

Table 5-15. USB Default Interface 0, Alternate Setting 1, Isochronous Endpoint Descriptors

Page 5-18

Offset Field Description Value
0 |bLength Length of this Endpoint Descriptor 07H
1 | bDescriptorType Descriptor Type = Endpoint 05H
2 | bEndpointAddress | Endpoint Direction (1 is in) and Address = IN8 88H
3 bmAttributes XFR Type = 1SO 01H
4 | wMaxPacketSize (L) | Maximum Packet Size = 16 Bytes 10H
5 | wMaxPacketSize (H) | Maximum Packet Size - High 00H
6 | blinterval Polling Interval in Milliseconds (1 for iso) 01H
0 |bLength Length of this Endpoint Descriptor 07H
1 | bDescriptorType Descriptor Type = Endpoint 05H
2 | bEndpointAddress | Endpoint Direction (1 is in) and Address = OUT8 08H
3 bmAttributes XFR Type = 1SO 01H
4 | wMaxPacketSize (L) | Maximum Packet Size = 16 Bytes 10H
5 | wMaxPacketSize (H) | Maximum Packet Size - High 00H
6 | binterval Polling Interval in Milliseconds (1 for iso) 01H
0 |bLength Length of this Endpoint Descriptor 07H
1 | bDescriptorType Descriptor Type = Endpoint 05H
2 | bEndpointAddress Endpoint Direction (1 is in) and Address = IN9 89H
3 | bmAttributes XFR Type = 1SO 01H
4 | wMaxPacketSize (L) | Maximum Packet Size = 16 Bytes 10H
5 | wMaxPacketSize (H) | Maximum Packet Size - High 00H
6 | binterval Polling Interval in Milliseconds (1 for iso) 01H
0 |bLength Length of this Endpoint Descriptor 07H
1 | bDescriptorType Descriptor Type = Endpoint 05H
2 | bEndpointAddress Endpoint Direction (1 is in) and Address = OUT9 09H
3 | bmAttributes XFR Type = 1SO 01H
4 | wMaxPacketSize (L) | Maximum Packet Size = 16 Bytes 10H
5 | wMaxPacketSize (H) | Maximum Packet Size - High 00H
6 | binterval Polling Interval in Milliseconds (1 for iso) 01H
0 [bLength Length of this Endpoint Descriptor 07H
1 | bDescriptorType Descriptor Type = Endpoint O5H
2 | bEndpointAddress Endpoint Direction (1 is in) and Address = IN10 8AH
3 | bmAttributes XFR Type = 1SO 01H
4 | wMaxPacketSize (L) | Maximum Packet Size = 16 Bytes 10H
5 | wMaxPacketSize (H) | Maximum Packet Size - High 00H
6 | binterval Polling Interval in Milliseconds (1 for iso) 01H
0 |bLength Length of this Endpoint Descriptor 07H
1 | bDescriptorType Descriptor Type = Endpoint O5H
2 | bEndpointAddress Endpoint Direction (1 is in) and Address = OUT10 0AH
3 | bmAttributes XFR Type = 1SO 01H
4 | wMaxPacketSize (L) | Maximum Packet Size = 16 Bytes 10H
5 | wMaxPacketSize (H) | Maximum Packet Size - High 00H
6 |binterval Polling Interval in Milliseconds (1 for iso) 01H

Chapter 5. EZ-USB CPU

EZ-USB TRM v1.9

Interface 0, alternate setting 1 has six isochronous endpoints with maximum packet sizes
of 16 bytes. This is ow bandwidthsetting.

Table 5-16. USB Default Interface 0, Alternate Setting 2 Descriptor

Offset Field Description Value
0 |bLength Length of the Interface Descriptor 09H
1 | bDescriptor Type Descriptor Type = Interface 04H
2 | binterfaceNumber Zero-based Index of this Interface = 0 O0H
3 | bAlternateSetting Alternate Setting Value = 2 02H
4 | bNumEndpoints Number of Endpoints in this Interface (Not Counting EPO) = 13 | ODH
5 | binterfaceClass Interface Class = Vendor Specific FFH
6 | binterfaceSubClass | Interface Sub-class = Vendor Specific FFH
7 binterfaceProtocol Interface Protocol = Vendor Specific FFH
8 |ilnterface Index to String Descriptor for this Interface = None 00H

Interface 0, alternate setting 2 has thirteen endpoints, whose individual descriptors follow
the interface descriptor. Alternate setting 2 differs from alternate setting 1 in the maxi-
mum packet sizes of its interrupt endpoint and two of its isochronous endpoints (EP8IN
and EP8OUT).

Table 5-17. USB Default Interface 0, Alternate Setting 1, Interrupt Endpoint Descriptor

Offset Field Description Value
0 |bLength Length of this Endpoint Descriptor 07H
1 | bDescriptorType Descriptor Type = Endpoint O5H
2 | bEndpointAddress Endpoint Direction (1 is in) and Address = IN1 81H
3 | bmAttributes XFR Type = INT 03H
4 | wMaxPacketSize (L) | Maximum Packet Size = 64 Bytes 40H
5 | wMaxPacketSize (H) | Maximum Packet Size - High 00H
6 | binterval Polling Interval in Milliseconds = 10 ms 0AH

Alternate setting 2 for the interrupt 1-IN increases the maximum packet size for the inter-
rupt endpoint to 64.

EZ-USB TRM v1.9 Chapter 5. EZ-USB CPU Page 5-19

Table 5-18. USB Default Interface 0, Alternate Setting 2, Bulk Endpoint Descriptors

Offset Field Description Value
0 |bLength Length of this Endpoint Descriptor 07H
1 | bDescriptor Type Descriptor Type = Endpoint 05H
2 | bEndpointAddress Endpoint Direction (1 is in) and Address = IN2 82H
3 | bmAttributes XFR Type = BULK 02H
4 | wMaxPacketSize (L) | Maximum Packet Size = 64 Bytes 40H
5 | wMaxPacketSize (H) | Maximum Packet Size - High 00H
6 binterval Polling Interval in Milliseconds (1 for iso) 00H
0 |bLength Length of this Endpoint Descriptor 07H
1 | bDescriptorType Descriptor Type = Endpoint 05H
2 | bEndpointAddress Endpoint Direction (1 is in) and Address = OUT2 02H
3 | bmAttributes XFR Type = BULK 02H
4 | wMaxPacketSize (L) | Maximum Packet Size = 64 Bytes 40H
5 | wMaxPacketSize (H) | Maximum Packet Size - High 00H
6 binterval Polling Interval in Milliseconds (1 for iso) 00H
0 |bLength Length of this Endpoint Descriptor 07H
1 | bDescriptorType Descriptor Type = Endpoint 05H
2 | bEndpointAddress Endpoint Direction (1 is in) and Address = IN4 84H
3 | bmAttributes XFR Type = BULK 02H
4 | wMaxPacketSize (L) | Maximum Packet Size = 64 Bytes 40H
5 | wMaxPacketSize (H) | Maximum Packet Size - High 00H
6 | blinterval Polling Interval in Milliseconds (1 for iso) 00H
0 |bLength Length of this Endpoint Descriptor 07H
1 | bDescriptorType Descriptor Type = Endpoint O5H
2 | bEndpointAddress Endpoint Direction (1 is in) and Address = OUT4 04H
3 | bmAttributes XFR Type = 1SO 02H
4 | wMaxPacketSize (L) | Maximum Packet Size = 64 Bytes 40H
5 | wMaxPacketSize (H) | Maximum Packet Size - High 00H
6 | binterval Polling Interval in Milliseconds (1 for iso) 00H
0 |bLength Length of this Endpoint Descriptor 07H
1 | bDescriptorType Descriptor Type = Endpoint O5H
2 | bEndpointAddress Endpoint Direction (1 is in) and Address = IN6 86H
3 | bmAttributes XFR Type = BULK 02H
4 | wMaxPacketSize (L) | Maximum Packet Size = 64 Bytes 40H
5 | wMaxPacketSize (H) | Maximum Packet Size - High 00H
6 |binterval Polling Interval in Milliseconds (1 for iso) 00H
0 |bLength Length of this Endpoint Descriptor 07H
1 | bDescriptorType Descriptor Type = Endpoint O5H
2 | bEndpointAddress Endpoint Direction (1 is in) and Address = OUT6 06H
3 | bmAttributes XFR Type = BULK 02H
4 | wMaxPacketSize (L) | Maximum Packet Size = 64 Bytes 40H
5 | wMaxPacketSize (H) | Maximum Packet Size - High 00H
6 |binterval Polling Interval in Milliseconds (1 for iso) 00H

The bulk endpoints for alternate setting 2 are identical to alternate setting 1.

Page 5-20

Chapter 5. EZ-USB CPU

EZ-USB TRM v1.9

Table 5-19. USB Default Interface 0, Alternate Setting 2, Isochronous Endpoint Descriptors

Offset Field Description Value
0 |DbLength Length of this Endpoint Descriptor 07H
1 | bDescriptorType Descriptor Type = Endpoint 05H
2 | bEndpointAddress | Endpoint Direction (1 is in) and Address = IN8 88H
3 bmAttributes XFR Type = 1SO 01H
4 | wMaxPacketSize (L) | Maximum Packet Size = 256 Bytes 10H
5 | wMaxPacketSize (H) | Maximum Packet Size - High 01H
6 | binterval Polling Interval in Milliseconds (1 for iso) 01H
0 |DbLength Length of this Endpoint Descriptor 07H
1 | bDescriptorType Descriptor Type = Endpoint 05H
2 | bEndpointAddress | Endpoint Direction (1 is in) and Address = OUT8 08H
3 bmAttributes XFR Type = 1SO 01H
4 | wMaxPacketSize (L) | Maximum Packet Size = 256 Bytes 00H
5 | wMaxPacketSize (H) | Maximum Packet Size - High 10H
6 | binterval Polling Interval in Milliseconds (1 for iso) 01H
0 |bCength Length of this Endpoint Descriptor O7H
1 | bDescriptorType Descriptor Type = Endpoint 05H
2 | bEndpointAddress Endpoint Direction (1 is in) and Address = IN9 89H
3 | bmAttributes XFR Type = 1SO 01H
4 | wMaxPacketSize (L) | Maximum Packet Size = 16 Bytes 10H
5 | wMaxPacketSize (H) | Maximum Packet Size - High 00H
6 | binterval Polling Interval in Milliseconds (1 for iso) 01H
0 | bLength Length of this Endpoint Descriptor 07H
1 | bDescriptorType Descriptor Type = Endpoint O5H
2 | bEndpointAddress Endpoint Direction (1 is in) and Address = OUT9 09H
3 | bmAttributes XFR Type = 1SO 01H
4 | wMaxPacketSize (L) | Maximum Packet Size = 16 Bytes 10H
5 | wMaxPacketSize (H) | Maximum Packet Size - High 00H
6 | binterval Polling Interval in Milliseconds (1 for iso) 01H
0 [bLength Length of this Endpoint Descriptor 07H
1 | bDescriptorType Descriptor Type = Endpoint O5H
2 | bEndpointAddress Endpoint Direction (1 is in) and Address = IN10 8AH
3 | bmAttributes XFR Type = 1SO 01H
4 | wMaxPacketSize (L) | Maximum Packet Size = 16 Bytes 10H
5 | wMaxPacketSize (H) | Maximum Packet Size - High 00H
6 |binterval Polling Interval in Milliseconds (1 for iso) 01H
0 [bLength Length of this Endpoint Descriptor 07H
1 | bDescriptorType Descriptor Type = Endpoint O5H
2 | bEndpointAddress Endpoint Direction (1 is in) and Address = OUT10 0AH
3 | bmAttributes XFR Type = 1SO 01H
4 | wMaxPacketSize (L) | Maximum Packet Size = 16 Bytes 10H
5 | wMaxPacketSize (H) | Maximum Packet Size - High 00H
6 |binterval Polling Interval in Milliseconds (1 for iso) 01H

The only differences between alternate settings 1 and 2 are the maximum packet sizes for

EP8IN and EP8OUT. This isfigh-bandwidthsetting using 256 bytes each.

EZ-USB TRM v1.9

Chapter 5. EZ-USB CPU

Page 5-21

Page 5-22 Chapter 5. EZ-USB CPU EZ-USB TRM v1.9

6 EZ-USB Bulk Transfers

A |
c
e N

Token Packet Data Packet H/S Pk Token Packet Data Packet

6.1 Introduction

Payload
Data

Payload

|
\ Data

D
E
A
N
T
D
b A
0

oFr0OXO0
= >»-H>»0
©oFr 0OXO

Figure 6-1. Two BULK Transfers, IN and OUT

EZ-USB provides sixteen endpoints for BULK, CONTROL, and INTERRUPT transfers,
numbered 0-7 as shown in Table 6-1. This chapter describes BULK and INTERRUPT
transfers. INTERRUPT transfers are a special case of BULK transfers. EZ-USB CON-
TROL endpoint zero is described in Chapter 7, "EZ-USB Endpoint Zero."

Table 6-1. EZ-USB Bulk, Control, and Interrupt Endpoints

Endpoint | Direction | Type | Size
0 Bidir Control | 64/64

1 IN Bulk/Int 64
1 ouT Bulk/Int 64
2 IN Bulk/Int | 64
2 ouT Bulk/Int | 64
3 IN Bulk/Int | 64
3 ouT Bulk/Int | 64
4 IN Bulk/Int 64
4 ouT Bulk/Int 64
5 IN Bulk/Int 64
5 ouT Bulk/Int 64
6 IN Bulk/Int | 64
*6 ouT Bulk/Int 64
7 IN Bulk/Int 64
7 ouT Bulk/Int 64

* The highlighted endpoints do not exist in the AN2122 or AN2126. See also Table 1-2.

EZ-USB TRM v1.9 Chapter 6. EZ-USB CPU Page 6-1

The USB specification allows maximum packet sizes of 8, 16, 32, or 64 bytes for bulk
data, and 1 - 64 bytes for interrupt data. EZ-USB provides the maximum 64 bytes of
buffer space for each of its sixteen endpoints 0-7 IN and 0-7 OUT. Six of the bulk end-
points, 2-IN, 4-IN, 6-IN, 2-OUT, 4-OUT, and 6-OUT may be paired with the next consec-
utively numbered endpoint to provide double-buffering, which allows one data packet to
be serviced by the 8051 while another is in transit over USB.e8tpoint pairing bits
(USBPAIR register) control double-buffering.

The 8051 sets fourteeandpoint valid bitINO7VAL, OUTO7VAL registers) at initializa-
tion time to tell the EZ-USB core which endpoints are active. The default CONTROL
endpoint zero is always valid.

Bulk data appears in RAM. Each bulk endpoint has a reserved 64-byte RAM space, a 7-
bit count register, and a 2-bit control and status (CS) register. The 8051 can read one bit of
the CS register to determimmdpoint busyand write the other to force an endpoint

STALL condition.

The 8051 should never read or write an endpoint buffer or byte count register while the
endpoint’s busy bit is set.

When an endpoint becomes ready for 8051 service, the EZ-USB core sets an interrupt
request bit. The EZ-USB vectored interrupt system separates the interrupt requests by
endpoint to automatically transfer control to the ISR (Interrupt Service Routine) for the
endpoint requiring service. Chapter 9, "EZ-USB Interrupts" fully describes this mecha-
nism.

Figure 6-2 illustrates the registers and bits associated with bulk transfers.

Page 6-2 Chapter 6. EZ-USB CPU EZ-USB TRM v1.9

Registers Associated with a Bulk IN endpoint
(EP2IN shown as example)

Data transfer

Initialization

INO7VAL | 7 [6][5 [a[a]2]1]0]
Endpoint Valid (1=valid)

067 | 045 | 023 | 67 | 45 | 23

USBPAIR‘

Endpoint Pairing (1=paired)

INO7IEN | 7 [6 [s[4[s]2]1]0]
Interrupt Enable (1=enabled)

IN2BUF
64 Byte
Endpoint
Buffer
IN2BC| | |
Byte Count

Busy and Stall

IN2CS | [s]s]
Control & Status

Interrupt Control

INO7IRQ | 7 [6 [s|4]a]2]1]0]

Interrupt Request (write 1 to clear)

Registers Associated with a Bulk OUT endpoint
(EP40OUT shown as example)

Data transfer

Initialization

OUTO7VAL |7 6 [s[a|a]2]1]0]
Endpoint Valid (1=valid)

USBPAIR‘

067

045

023

i67

45

i23

Endpoint Pairing (1=paired)

OUTO?IEN‘7‘6‘5‘4‘3‘2‘1‘0‘
Interrupt Enable (1=enabled)

OUT4BUF
64 Byte
Endpoint
Buffer
OUT4BC| | |
Byte Count

Busy and Stall

ouTACS | [8]s]
Control & Status

Interrupt Control

ouTo7irQ| 7 | ¢ [s[4]3a]21]o]
Interrupt Request (write 1 to clear)

EZ-USB TRM v1.9

Figure 6-2. Registers Associated with Bulk Endpoints

Chapter 6. EZ-USB CPU

Page 6-3

6.2 Bulk IN Transfers

H D H H D
AllEl| 2 g A AllE|| c
1 o N||R|I||F]| Payioad ol e | o|| || R | N)
N/ o|| o| cl||| o Data T ¥ N/ bl ol ||| |A 0
R/ P||5 R/ Pl 5 K =
1 6 N
Token Packet Data Packet H/S Pk Token Packet) \H/S Pk HJ,
4 8
>
(INnBC loaded) EPnIN Interrupt, INNBSY=0 8
1
(@) & ©® @ a
H D I D H 3
T
Al EllC Al E|lC 2 g T
1| o n||RI[| N 1| D/ N||R T Payoad || 24 g
N/ bl D/ cl| | A N| || D|| C A Data N c o
R/ Pl 5 K R/ P||5 K z
0 6
Token Packet /S Pkt T Token Packet Data Packet H/S Pk
Load INnBC EPnIN Interrupt, INNBSY=0 J

Figure 6-3. Anatomy of a Bulk IN Transfer

USB bulkIN data travels from device to host. The host requests an IN transfer by issuing
an IN token to the EZ-USB core, which responds with data when it is ready. The 8051
indicatesreadyby loading the endpoint’s byte count register. If the EZ-USB core receives
an IN token for an endpoint that is not ready, it responds to the IN token viNthkahand-
shake.

In the bulk IN transfer illustrated in Figure 6-3, the 8051 has previously loaded an end-
point buffer with a data packet, and then loaded the endpoint’s byte count register with the
number of bytes in the packet to arm the next IN transfer. This sets the endpoint's BUSY
Bit. The host issues an IN token (1), to which the USB core responds by transmitting the
data in the IN endpoint buffer (2). When the host issues an ACK (3), indicating that the
data has been received error-free, the USB core clears the endpoint's BUSY Bit and sets
its interrupt request bit. This notifies the 8051 that the endpoint buffer is empty. If thisis a
multi-packet transfer, the host then issues another IN token to get the next packet.

If the second IN token (4) arrives before the 8051 has had time to fill the endpoint buffer,
the EZ USB core issues a NAK handshake, indicaingy(5). The host continues to send

Page 6-4 Chapter 6. EZ-USB CPU EZ-USB TRM v1.9

IN tokens (4) and (7) until the data is ready. Eventually, the 8051 fills the endpoint buffer
with data, and then loads the endpoint’s byte count register (INnBC) with the number of
bytes in the packet (6). Loading the byte count re-arms the given endpoint. When the next
IN token arrives (7) the USB core transfers the next data packet (8).

6.3 Interrupt Transfers

Interrupt transfers are handled just like bulk transfers.

The only difference between a bulk endpoint and an interrupt endpoint exists in the end-
point descriptor, where the endpoint is identified as tyyerrupt, and gpolling intervalis
specified. The polling interval determines how often the USB host issues IN tokens to the
interrupt endpoint.

6.4 EZ-USB Bulk IN Example

Suppose 220 bytes are to be transferred to the host using endpoint 2-IN. Further assume
that MaxPacketSize of 64 bytes for endpoint 2-IN has been reported to the host during
enumeration. Because the total transfer size exceeds the maximum packet size, the 8051
divides the 220-byte transfer into four transfers of 64, 64, 64, and 28 bytes.

After loading the first 64 bytes into IN2BUF (at 0x7C00), the 8051 loads the byte count
register IN6BC with the value 64. Writing the byte count register instructs the EZ-USB
core to respond to the next host IN token by transmitting the 64 bytes in the buffer. Until
the byte count register is loadeddaam the IN transfer, any IN tokens issued by the host

are answered by EZ-USB with NAK (Not-Acknowledge) tokens, telling the USB host that
the endpoint is not yet ready with data. The host continues to issue IN tokens to endpoint
2-IN until data is ready for transfer—whereupon the EZ-USB core replaces NAKs with
valid data.

When the 8051 initiates an IN transfer by loading the endpoint’s byte count register, the
EZ-USB core sets a busy bit to instruct the 8051 to hold off loading IN2BUF until the

USB transfer is finished. When the IN transfer is complete and successfully acknowl-
edged, the EZ-USB core resets the endpoint 2-IN busy bit and generates an endpoint 2-IN
interrupt request. If the endpoint 2-IN interrupt is enabled, program control automatically
vectors to the data transfer routine for further action (Autovectoring is enabled by setting
AVEN=1, refer to Chapter 9, "EZ-USB Interrupts").

EZ-USB TRM v1.9 Chapter 6. EZ-USB CPU Page 6-5

The 8051 now loads the next 64 bytes into IN2BUF and then loads the EPINBC register
with 64 for the next two transfers. For the last portion of the transfer, the 8051 loads the
final 28 bytes into IN2BUF, and loads IN2BC with 28. This completes the transfer.

Initialization Note

When the EZ-USB chip comes out of RESET, or when the USB host issues a bus reset,
the EZ-USB corainarms IN endpoint 1-7 by setting their busy bits to 0. Any IN trans-

fer requests are NAKd until the 8051 loads the appropriate INXBC register(s). The end-
point valid bits are not affected by an 8051 reset or a USB reset. Chapter 10, "EZ;USB
Resets" describes the various reset conditions in detail.

The EZ-USB core takes care of USB housekeeping chores such as handshake verification.
When an endpoint 2-IN interrupt occurs, the user is assured that the data loaded by the
8051 into the endpoint buffer was received error-free by the host. The EZ-USB core auto-
matically checks the handshake information from the host and re-transmits the data if the
host indicates an error by not ACKing.

6.5 Bulk OUT Transfers

USB bulkOUT data travels from host to device. The host requests an OUT transfer by
issuing an OUT token to EZ-USB, followed by a packet of data. The EZ-USB core then
responds with an ACK, if it correctly received the data. If the endpoint buffer is not ready
to accept data, the EZ-USB core discards the host’s OUT data and returns a NAK token,
indicating “not ready.” In response, the host continues to send OUT taehdatato

the endpoint until the EZ-USB core responds with an ACK.

Page 6-6 Chapter 6. EZ-USB CPU EZ-USB TRM v1.9

H H D H H D
D C D C
Al E|| C Al E|| C
Ol ol n|| rI[|| A Payload R A Ol ol n|| rIf|| A Payload R N '
U T C © U T C A —~
D|| D|| C Data D|| D|| C Data m
T rll Pl 5 A 1 K T rllpll s A 1 K T
1 6 0 6 :I)
Token Packet Data Packet H/S Pk Token Packet Data Packet /S Pkt m
t 3
(Ogg’;ﬁg SI 3’3_‘;‘)5"1’ EPnOUT Interrupt, 5
OUTnBSY=0 a
1]
[a)
—
® (®) (& @ (® 7
o
H H D H H D I
I
D C D C ..
AllE|| C AllE|| C O
© D|| N|| R A Payload R N o D|| N|| R A Payload R A IS
U T C A U T C © =z
D|| D|| C Data D|| D|| C Data
T Rl Pl 5 A 1 K T rlplls A 1 K
0 6 0 6
Token Packet Data Packet H/S Pkt T Token Packet Data Packe H/S Pk
Load OUTnBC (any value), EPnOUT lnter_rupt,
causes OUTnBSY=1 OUTnBSY=0

Figure 6-4. Anatomy of a Bulk OUT Transfer

Each EZ-USB bulk OUT endpoint has a byte count register, which serves two purposes.
The 8051readsthe byte count register to determine how many bytes were received during
the last OUT transfer from the host. The 80&fdtesthe byte count register (with any
value) to tell the EZ-USB core that is has finished reading bytes from the buffer, making
the buffer available to accept the next OUT transfer. The OUT endpoints come up (after
reset)armed so the byte count register writes are required only for OUT transfers after the
first one.

In the bulk OUT transfer illustrated in Figure 6-4, the 8051 has previously loaded the end-
point’s byte count register with any value to arm receipt of the next OUT transfer. Loading
the byte count register causes the EZ-USB core to set the OUT endpoint’s busy bit to 1,
indicating that the 8051 should not use the endpoint’s buffer.

The host issues an OUT token (1), followed by a packet of data (2), which the USB core
acknowledges, clears the endpoint’s busy bit and generates an interrupt request (3). This
notifies the 8051 that the endpoint buffer contains valid USB data. The 8051 reads the
endpoint’s byte count register to find out how many bytes were sent in the packet, and
transfers that many bytes out of the endpoint buffer.

In a multi-packet transfer, the host then issues another OUT token (4) along with the next
data packet (5). If the 8051 has not finished emptying the endpoint buffer, the EZ-USB FX

EZ-USB TRM v1.9 Chapter 6. EZ-USB CPU Page 6-7

host issues a NAK, indicatingusy(6). The data at (5) is shaded to indicate that the USB
core discards it, and does not over-write the data in the endpoint’s OUT buffer.

The host continues to send OUT tokens (4, 5, and 6) that are greeted by NAKs until the
buffer is ready. Eventually, the 8051 empties the endpoint buffer data, and then loads the
endpoint’s byte count register (7) with any value to re-arm the USB core. Once armed and
when the next OUT token arrives (8) the USB core accepts the next data packet (9).

Initializing OUT Endpoints

When the EZ-USB chip comes out of reset, or when the USB host issues a bus reset, the
EZ-USB corearmsOUT endpoints 1-7 by setting their busy bits to 1. Therefore, they
are initially ready to accept one OUT transfer from the host. Subsequent OUT transfers
are NAKd until the appropriate OUTNBC register is loaded to re-arm the endpoint.

The EZ-USB core takes care of USB housekeeping chores such as CRC checks and data
toggle PIDs. When an endpoint 6-OUT interrupt occurs and the busy bit is cleared, the
user is assured that the data in the endpoint buffer was received error-free from the host.
The EZ-USB core automatically checks for errors and requests the host to re-transmit data
if it detects any errors using the built-in USB error checking mechanisms (CRC checks
and data toggles).

6.6 Endpoint Pairing

Table 6-2. Endpoint Pairing Bits (in the USB PAIR Register)

Bit 5 4 3 2 1 0
Name PR6OUT | PR4OUT | PR2OUT PR6IN PR4IN PR2IN
Paired 6 OUT 4 OUT 20UT 6IN 4IN 2IN
Endpoints | 7 OUT 50UT 30uT 7IN 5IN 3IN

The 8051 sets endpoint pairing bits to 1 to enable double-buffering of the bulk endpoint
buffers. With double buffering enabled, the 8051 can operate on one data packet while
another is being transferred over USB. The endpoint busy and interrupt request bits func-
tion identically, so the 8051 code requires little code modification to support double-buff-
ering.

When an endpoint is paired, the 8051 uses only the even-numbered endpoint of the pair.
The 8051 should not use the paired odd endpoint. For example, suppose it is desired to

Page 6-8 Chapter 6. EZ-USB CPU EZ-USB TRM v1.9

use endpoint 2-IN as a double-buffered endpoint. This pairs the IN2BUF and IN3BUF
buffers, although the 8051 accesses the IN2BUF buffer only. The 8051 sets PR2IN=1 (in
the USBPAIR register) to enable pairing, sets IN2VAL=1 (in the INO7VAL register) to
make the endpoint valid, and then uses the IN2BUF buffer for all data transfers. The 8051
should not write the IN3VAL bit, enable IN3 interrupts, access the EP3IN buffer, or load
the IN3BC byte count register.

Note
Bits 2 and 5 must be set to “0” in the AN2122 and AN2126 devices.

6.7 Paired IN Endpoint Status

INNBSY=1 indicates thabothendpoint buffers are in use, and the 8051 should not load
new IN data into the endpoint buffer. When INNBSY=0, either one or both of the buffers
is available for loading by the 8051. The 8051 can keep an internal count that increments
on EPnIN interrupts and decrements on byte count loads to determine whether one or two
buffers are free. Or, the 8051 can simply check for INNnBSY=0 after loading a buffer (and
loading its byte count register to re-arm the endpoint) to determine if the other buffer is
free.

Important Note

If an IN endpoint is paired and it is desired to clear the busy bit for that endpoint, do the
following: (a) write any value to the even endpoint’s byte count registare, and (b)
clear the busy bit for both endpoints in the pair. This is the only code difference between
paired and unpaired use of an IN endpoint.

A bulk IN endpoint interrupt request is generated whenever a packet is successfully trans-
mitted over USB. The interrupt request is independent of the busy bit. If both buffers are
filled and one is sent, the busy bit transitions from 1-0; if one buffer is filled and then sent,
the busy bit starts and remains at 0. In either case an interrupt request is generated to tell
the 8051 that a buffer is free.

EZ-USB TRM v1.9 Chapter 6. EZ-USB CPU Page 6-9

6.8 Paired OUT Endpoint Status

OUTNnBSY=1 indicates that both endpoint buffers are empty, and no data is available to
the 8051. When OUTNnBSY=0, either one or both of the buffers holds USB OUT data.
The 8051 can keep an internal count that increments on EPnOUT interrupts and decre-
ments on byte count loads to determine whether one or two buffers contain data. Or, the
8051 can simply check for OUTnBSY=0 after unloading a buffer (and loading its byte
count register to re-arm the endpoint) to determine ifdtreer buffer contains data.

6.9 Using Bulk Buffer Memory

Table 6-3. EZ-USB Endpoint 0-7 Buffer Addresses

Endpoint Buffer Address Mirrored
INOBUF TF00-7F3F 1F00-1F3F
OUTOBUF 7TECO-7EFF 1ECO-1EFF
IN1BUF TE80-7EBF 1E80-1EBF
OUT1BUF TE40-TETF 1E40-1E7F
IN2BUF TEQO-7E3F 1E00-1E3F
OUT2BUF 7DCO-7DFF 1DCO-1DFF
IN3BUF 7D80-7DBF 1D80-1DBF
OUT3BUF 7D40-7D7F 1D40-1D7F
IN4BUF 7D00-7D3F 1D00-1D3F
OUT4BUF 7CC0-7CFF 1CCO0-1CFF
INSBUF 7C80-7CBF 1C80-1CBF
OUT5BUF 7C40-7CTF 1C40-1C7F
IN6BUF 7C00-7C3F 1C00-1C3F
OUT6BUF 7BCO-7BFF 1BCO-1BFF
IN7BUF 7B80-7BBF 1B80-1BBF
OUT7BUF 7B40-7B7F 1B40-1B7F

Table 6-3 shows the RAM locations for the sixteen 64-byte buffers for endpoints 0-7 IN
and OUT. These buffers are positioned at the bottom of the EZ-USB register space so that
any buffers not used for endpoints can be reclaimed as general purpose data RAM. The
top of memory for the 8-KB EZ-USB part is at 0xX1B3F. However, if the endpoints are
allocated in ascending order starting with the lowest numbered endpoints, the higher num-
bered unused endpoints can effectively move the top of memory to utilize the unused end-
point buffer RAM as data memory. For example, an application that uses endpoint 1-IN,

Page 6-10 Chapter 6. EZ-USB CPU EZ-USB TRM v1.9

2-IN/OUT (paired), 4-IN and 4-OUT can use 0x1B40-0x1CBF as data memory. Chapter
3 gives full details of the EZ-USB memory map.

Note

AN2122 endpoint memory starts at 0Ox1C00 and AN2126 endpoint memory starts at
address 0x7C00.

Note

Uploads or Downloads to unused bulk memory can be done only Mitinered (low)
addresses shown in Table 6-3.

6.10 Data Toggle Control

The EZ-USB core automatically maintains the data toggle bits during bulk, control and
interrupt transfers. As explained in Chapter 1, "Introducing EZ-USB," the toggle bits are
used to detect certain transmission errors so that erroneous data can be re-sent.

In certain circumstances, the host resets its data toggle to “DATAQ":
» After sending a Clear_Feature: Endpoint Stall request to an endpoint.
* After setting a new interface.
» After selecting a new alternate setting.

In these cases, the 8051 can directly clear the data toggle for each of the bulk/interrupt/
control endpoints, using the TOGCTL register (Figure 6-5).

TOGCTL Data Toggle Control 7FD7
b7 b6 b5 b4 b3 b2 bl b0
Q s R 10 0 EP2 EP1 EPO
R R/W R/W R/W R/W R/W R/W R/W
X X X X X X X X

EZ-USB TRM v1.9

Figure 6-5. Bulk Endpoint Toggle Control

Chapter 6. EZ-USB CPU

Page 6-11

The 10 bit selects the endpoint direction (1=IN, 0=0OUT), and the EP2-EP1-EPO bits select
the endpoint number. Th@ bit, which is read-only, indicates the state of the data toggle
for the selected endpoint. Writing R=1 sets the data toggle to DATAO, and writing S=1
sets the data toggle to DATAL.

Note

At the present writing, there appears to be no reason to set a data toggle to DATAL1. The
Shit is provided for generality.

To clear an endpoint’s data toggle, the 8051 performs the following sequence:

» Select the endpoint by writing the value 000DOEEE to the TOGCTL register,
where D is the direction and EEE is the endpoint number.

* Clear the toggle bit by writing the value 001DOEEE to the TOGCTL register.

After step 1, the 8051 may read the state of the data toggle by reading the TOGCTL regis-
ter checking bit 7.

Page 6-12 Chapter 6. EZ-USB CPU EZ-USB TRM v1.9

6.11 Polled Bulk Transfer Example

The following code illustrates the EZ-USB registers used for a simple bulk transfer. In
this example, 8051 register R1 keeps track of the number of endpoint 2-IN transfers and
register R2 keeps track of the number of endpoint 2-OUT transfers (mod-256). Every
endpoint 2-IN transfer consists of 64 bytes of a decrementing count, with the first byte
replaced by the number of IN transfers and the second byte replaced by the number of
OUT transfers.

EZ-USB TRM v1.9

1 start: mov SP #STACK-1 ; set stack
2 mov dptr,#IN2BUF ; fill EP2IN buffer with
3 mov r7,#64 ; decrementing counter
4 Aill: mov a,r’
5 movx @dptr,a
6 inc dptr
7 djnz r7,rill
8
9 mov rl,#0 ; 1 is IN token counter
10 mov r2,#0 ; r2 is OUT token counter
11 mov dptr,#IN2BC ; Point to EP2 Byte Count register
12 mov a,#40h ; 64-byte transfer
13 movx @dptr,a ; arm the IN2 transfer
14 ;
15 loop: mov dptr,#IN2CS ; poll the EP2-IN Status
16 movx a,@dptr
17 jnb acc.1,servicelN2 ; not busy--keep looping
18 mov dptr,#0UT2CS
19 movx a,@dptr
20 jb acc.1,loop ; EP20UT is busy--keep looping
21 ;
22 serviceOUT2:
23 inc r2 ; OUT packet counter
24 mov dptr,#0OUT2BC ; load byte count register to re-arm
25 movx @dptr,a ; (any value)
26 sjimp loop
27 ;
28 servicelN2:
29 inc rl ; IN packet counter
30 mov dptr,3IN2BUF ; update the first data byte
31 mov a,ri ; in EP2IN buffer
32 movx @dptr,a
33 inc dptr ; second byte in buffer
34 mov a,r2 ; get number of OUT packets
35 movx @dptr,a
36 mov dptr,#IN2BC ; point to EP2IN Byte Count Register
37 mov a,#40h
38 movx @dptr,a ; load bc=64 to re-arm IN2
39 sjimp loop
40 ;
41 END
Figure 6-6. Example Code for a Simple (Polled) BULK Transfer

Chapter 6. EZ-USB CPU

Page 6-13

The code at lines 2-7 fills the endpoint 2-IN buffer with 64 bytes of a decrementing count.
Two 8-bit counts are initialized to zero at lines 9 and 10. An endpoint 2-IN transfer is
armedat lines 11-13, which load the endpoint 2-IN byte count register IN2BC with 64.
Then the program enters a polling loop at lines 15-20, where it checks two flags for end-
point 2 servicing. Lines 15-17 check the endpoint 2-IN busy bit in IN2CS bit 1. Lines 18-
20 check the endpoint 2-OUT busy bitin OUT2CS bit 1. When busy=1, the EZ-USB core
is currently using the endpoint buffers and the 8051 should not access them. When
busy=0, new data is ready for service by the 8051.

For both IN and OUT endpoints, the busy bit is set when the EZ-USB core is using the
buffers, and cleared by loading the endpoint’s byte count register. The byte count value is
meaningful for IN transfers because it tells the EZ-USB core how many bytes to transfer
in response to the next IN token. The 8051 can load any byte count OUT transfers,
because only the act of loading the register is significant—loading OUTnBC arms the
OUT transfer and sets the endpoint’s busy bit.

When an OUT packet arrives in OUT2BUF, the service routine at lines 22-26 increments
R2, loads the byte count (any value) into OUT2BC to re-arm the endpoint (lines 24-25),
and jumps back to the polling routine. This program does not use OUT2BUF data; it sim-
ply counts the number of endpoint 2-OUT transfers.

When endpoint 2-IN is ready for the 8051 to load another packet into IN2BUF, the polling
loop jumps to the endpoint 2-IN service routine at lines 28-39. First, R1 is incremented
(line 29). The data pointer is set to IN2BUF at line 30, and register R1 is loaded into the
first byte of the buffer (lines 31-32). The data pointer is advanced to the second byte of
IN2BUF at line 33, and register R2 is loaded into the buffer (lines 34-35). Finally, the
byte count 40H (64 decimal bytes) is loaded into the byte count register IN2BC to arm the
next IN transfer at lines 36-38, and the routine returns the polling loop.

6.12 Enumeration Note

The code in this example is complete, and runs on the EZ-USB chip. You may be wonder-
ing about themissing stepwhich reports the endpoint characteristics to the host during the
enumeration process. The reason this code runs without any enumeration code is that the
EZ-USB chip comes on as a fully-functional USB device with certain endpoints already
configured and reported to the host. Endpoint 2 is included in this default configuration.
The full default configuration is described in Chapter 5, "EZ-USB Enumeration and
ReNumeratiofl"

Page 6-14 Chapter 6. EZ-USB CPU EZ-USB TRM v1.9

6.13 Bulk Endpoint Interrupts

AllUSB interrupts activate the 803NT 2interrupt. If enabled, INT2 interrupts cause the
8051 to push the current program counter onto the stack, and then execute a jump to loca-
tion 0x43, where the programmer has inserted a jump instruction to the interrupt service
routine (ISR). If the AVEN (Autovector Enable) bit is set, the EZ-USB core inserts a spe-
cial byte at location 0x45, which directs the jump instruction to a table of jump instruc-
tions which transfer control the endpoint-specific ISR.

Table 6-4. 8051 INT2 Interrupt Vector

Location Op-Code Instruction
0x43 02 LIMP
0x44 AddrH
0x45 AddrL*

* Replaced by EZ-USB Core if AVEN=1.

The byte inserted by the EZ-USB core at address 0x45 depends on which bulk endpoint
requires service. Table 6-5 shows all INT2 vectors, with the bulk endpoint vectors un-
shaded. The shaded interrupts apply to all the bulk endpoints.

Table 6-5. Byte Inserted by EZ-USB Core at Location 0x45 if AVEN=1

Interrupt Inserted Byte at 0x45
SUDAV 0x00
SOF 0x04
SUTOK 0x08
SUSPEND 0x0C
USBRES 0x10
Reserved 0x14
EPO-IN 0x18
EPO-OUT 0X1C
EP1-IN 0x20
EP10OUT 0x24
EP2IN 0x28
EP20UT 0x2C
EP3-IN 0x30
EP3-OUT 0x34
EP4-IN 0x38
EP4-OUT 0x3C
EP5-IN 0x40
EP5-OUT 0x44
EP6-IN 0x48
EP6-OUT 0x4C
EP7-IN 0x50
EP7-OUT 0x54

EZ-USB TRM v1.9 Chapter 6. EZ-USB CPU Page 6-15

The vector values are four bytes apart. This allows the programmer to build a jump table
to each of the interrupt service routines. Note that the jump table must begin on a page
(256 byte) boundary because the first vector starts at 00. If Autovectoring is not used
(AVEN=0), the IVEC register may be directly inspected to determine the USB interrupt
source (see Section 9.11, "Autovector Coding").

Each bulk endpoint interrupt has an associated interrupt enable bit (in INO7IEN and
OUTO7IEN), and an interrupt request bit (in INO7IRQ and OUTO07IRQ). The interrupt
service routine.IRQ bits are cleared by writing a “1.”Because all USB registers are
accessed using “movx@dptr” instructions, USB interrupt service routines must save and

restore both data pointers, the DPS register, and the accumulator before clearing interrupt
request bits.

Note

Any USB ISR should clear the 8051 INT2 interrupt request bit before clearing any of the
EZ-USB endpoint IRQ bits, to avoid losing interrupts. Interrupts are discussed in more
detail in Chapter 9, "EZ-USB Interrupts.”

Individual interrupt request bits are cleared by writing “1” to them to simplify code. |For
example, to clear the endpoint 2-IN IRQ, simply write “0000100” to INO7IRQ. This will

not disturb the other interrupt request bit3o not read the contents of INO7IRQ, logi-
cal-OR the contents with 01, and write it back This clears all other pending interrupts
because you are writing “1”s to them.

6.14 Interrupt Bulk Transfer Example

This simple (but fully-functional) example illustrates the bulk transfer mechanism using
interrupts. In the example program, BULK endpoint 6 is used to loop data back to the
host. Data sent by the host over endpoint 2-OUT is sent back over endpoint 2-IN.

Page 6-16 Chapter 6. EZ-USB CPU EZ-USB TRM v1.9

1. Set up the jump table.

CSEG AT 300H ; any page boundary
USB_Jump_Table:

ljmp SUDAV_ISR ; SETUP Data Available

db 0 ; make a 4-byte entry

ljmp SOF_ISR ; SOF

db 0

ljmp SUTOK_ISR ; SETUP Data Loading

db 0

ljmp SUSP_ISR ; Global Suspend

db 0

ljmp URES_ISR ; USB Reset

db 0

ljmp SPARE_ISR

db 0

ljmp EPOIN_ISR

db 0

ljmp EPOOUT_ISR

db 0

ljmp EP1IN_ISR

db 0

ljmp EP10OUT_ISR

db 0

ljmp EP2IN_ISR

db 0

ljmp EP20UT_ISR

db 0

ljmp EP3IN_ISR

db 0

ljmp EP30OUT_ISR

db 0

ljmp EP4IN_ISR

db 0

ljimp EP40OUT_ISR

db 0

ljmp EP5IN_ISR

db 0

ljimp EP50UT_ISR

db 0

limp EP6IN_ISR ; Used by this example

db 0

limp EP6OUT_ISR ; Used by this example

db 0

ljimp EP7IN_ISR

db 0

ljimp EP70UT_ISR

db 0

Figure 6-7. Interrupt Jump Table

This table contains all of the USB interrupts, even though only the jumps for endpoint 2
are used for the example. Itis convenient to include this table in any USB application that
uses interrupts. Be sure to locate this table on a page boundary (xx00).

EZ-USB TRM v1.9 Chapter 6. EZ-USB CPU Page 6-17

2. Write the INT2 interrupt vector.

org 43h ; int2 is the USB vector
ljmp USB_Jump_Table ; Autovector will replace byte 45

Figure 6-8. INT2 Interrupt Vector

3. Write the interrupt service routine.

Put it anywhere in memory and the jump table in step 1 will automatically jump to it.

; USB Interrupt Service Routine

EP20UT_ISR push dps ; save both dptrs, dps, and acc

push dpl

push dph

push dpll

push dphl

push acc

mov a,EXIF ; clear USB IRQ (INT2)

clr acc.4

mov EXIF,a

mov dptr,#OUTO07IRQ

mov a,#01000000b ;o a “1" clears the IRQ bit
movx @dptr,a ; clear OUT2 int request
setb got EP2_data ; set my flag

pop acc ; restore vital registers
pop dph1

pop dpll

pop dph

pop dpl

pop dps

reti

Figure 6-9. Interrupt Service Routine (ISR) for Endpoint 2-OUT

In this example, the ISR simply sets the 8051 flag “got_ EP2_data” to indicate to the back-
ground program that the endpoint requires service. Note that both data pointers and the
DPS (Data Pointer Select) registers must be saved and restored in addition to the accumu-

lator.

Page 6-18 Chapter 6. EZ-USB CPU EZ-USB TRM v1.9

4. Write the endpoint 2 transfer program.

1 loop: jnb got_EP2_data,loop

2 clr got_EP2_data ; clear my flag

3

4 ; The user sent bytes to OUT2 endpoint using the USB Control Panel.

5 ; Find out how many bytes were sent.

6 -

7 mov dptr,#0UT2BC ; point to OUT2 byte count register
8 movx a,@dptr ; get the value

9 mov r7,a ; stash the byte count

10 mov r6,a ; save here also

11 ;

12 ; Transfer the bytes received on the OUT2 endpoint to the IN2 endpoint

13 ; buffer. Number of bytes in r6 and r7.

14 ;

15 mov dptr,#OUT2BUF ; first data pointer points to EP20UT buffer
16 inc dps ; select the second data pointer

17 mov dptr,#IN2BUF ; second data pointer points to EP2IN buffer
18 inc dps ; back to first data pointer

19 transfer: movx movx get OUT byte

20 inc dptr ; bump the pointer

21 inc dps ; second data pointer

22 movx @dptr,a ; put into IN buffer

23 inc dptr ; bump the pointer

24 inc dps ; first data pointer

25 djnz r7,transfer

26 ;

27 ; Load the byte count into IN2BC. This arms in IN transfer

28 ;

29 mov dptr,#IN2BC

30 mov a,ré ; get other saved copy of byte count
31 movx @dptr,a ; this arms the IN transfer

32 ;

33 ; Load any byte count into OUT2BC. This arms the next OUT transfer.

34 ;

35 mov dptr,#0OUT2BC

36 movx @dptr,a ; use whatever is in acc

37 simp loop ; start checking for another OUT2 packet

Figure 6-10. Background Program Transfers Endpoint 2-OUT Data to Endpoint 2-IN

The main program loop tests the “got_ EP2_data” flag, waiting until it is set by the end-
point 2 OUT interrupt service routine in Figure 6-10. This indicates that a new data
packet has arrived in OUT2BUF. Then the service routine is entered, where the flag is
cleared in line 2. The number of bytes received in OUT2BUF is retrieved from the
OUT2BC register (Endpoint 2 Byte Count) and saved in registers R6 and R7 in lines 7-10.

The dual data pointers are initialized to the source (OUT2BUF) and destination (IN2BUF)
buffers for the data transfer in lines 15-18. These labels represent the start of the 64-byte
buffers for endpoint 2-OUT and endpoint 2-IN, respectively. Each byte is read from the
OUT2BUF buffer and written to the IN2BUF buffer in lines 19-25. The saved value of

EZ-USB TRM v1.9 Chapter 6. EZ-USB CPU Page 6-19

OUT2BC is used as a loop counter in R7 to transfer the exact number of bytes that were
received over endpoint 2-OUT.

When the transfer is complete, the program loads the endpoint 2-IN byte count register
IN2BC with the number of loaded bytes (from R6)aom the next endpoint 2-IN transfer

in lines 29-31. Finally, the 8051 loads any value into the endpoint 2 OUT byte count reg-
ister OUT2BC to arm the next OUT transfer in lines 35-36. Then the program loops back
to check for more endpoint 2-OUT data.

5. Initialize the endpoints and enable the interrupts.

start: mov SP,#STACK-1 ; set stack

; Enable USB interrupts and Autovector

mov dptr,#USBBAV ; enable Autovector
movx a,@dptr,a
setb acc.0 ; AVEN bit is bit 0

movx @dptr,a

mov dptr,#OUTO7IEN ; ‘EPO-7 OUT int enables’ register
mov a,#01000000b ; set bit 6 for EP20UT interrupt enable
movx @dptr,a ; enable EP20UT interrupt

; Enable INT2 and 8051 global interrupts

setb ex2 ; enable int2 (USB interrupt)
setb EA ; enable 8051 interrupts
clr got_EP2_data ; clear my flag

Figure 6-11. Initialization Routine

The initialization routine sets the stack pointer, and enables the EZ-USB Autovector by

setting USBBAV.0 to 1. Then it enables the endpoint 2-OUT interrupt, all USB interrupts
(INT2), and the 8051 global interrupt (EA) and finally clears the flag indicating that end-

point 2-OUT requires service.

Once this structure is put into place, it is quite easy to service any or all of the bulk end-
points. To add service for endpoint 2-IN, for example, simply write an endpoint 2-IN
interrupt service routine with starting address EP2IN_ISR (to match the address in the
jump table in step 1), and add its valid and interrupt enable bits to the “init” routine.

Page 6-20 Chapter 6. EZ-USB CPU EZ-USB TRM v1.9

6.15 Enumeration Note

The code in this example is complete, and runs on the EZ-USB chip. You may be wonder-
ing about themissing stepwhich reports the endpoint characteristics to the host during the
enumeration process. The reason this code runs without any enumeration code is that the
EZ-USB chip comes on as a fully-functional USB device with certain endpoints already
configured and reported to the host. Endpoint 2 is included in this default configuration.
The full default configuration is described in Chapter 5, "EZ-USB Enumeration and
ReNumeration"

Portions of the above code are not necessary for the default configuration (such as setting

the endpoint valid bits) but the code is included to illustrate all of the EZ-USB registers
used for bulk transfers.

EZ-USB TRM v1.9 Chapter 6. EZ-USB CPU Page 6-21

6.16 The Autopointer

Bulk endpoint data is available in 64-byte buffers in EZ-USB RAM. In some cases it is
preferable to access bulk data as a FIFO register rather than as a RAM. The EZ-USB core
provides a special data pointer which automatically increments when data is transferred.
Using this Autopointer, the 8051 can access any contiguous block of internal EZ-USB

RAM as a FIFO.
AUTOPTRH Autopointer Address High 7FE3
b7 b6 b5 b4 b3 b2 bl b0
A15 Al4 A13 A12 A1l A10 A9 A8
R/W R/W R/W R/W R/W R/W R/W R/W
X X X X X X X X
AUTOPTRL Autopointer Address Low 7FEA4
b7 b6 b5 b4 b3 b2 bl b0
A7 A6 A5 A4 A3 A2 Al AO
R/W R/W R/W R/W R/W R/W R/W R/W
X X X X X X X X
AUTODATA Autopointer Data 7FES
b7 b6 b5 b4 b3 b2 bl b0
D7 D6 D5 D4 D3 D2 D1 DO
R/W R/W R/W R/W R/W R/W R/W R/W
X X X X X X X X

Figure 6-12. Autopointer Registers

The 8051 first loads AUTOPTRH and AUTOPTRL with a RAM address (for example the
address of a bulk endpoint buffer). Then, as the 8051 reads or writes data to the data reg-
ister AUTODATA, the address is supplied by AUTOPTRHY/L, which automatically incre-
ments after every read or write to the AUTODATA register. The AUTOPTRHY/L registers
may be written or read at anytime. These registers maintain the current pointer address, so
the 8051 can read them to determine where the next byte will be read or written.

Page 6-22 Chapter 6. EZ-USB CPU EZ-USB TRM v1.9

The 8051 code example in Figure 6-13 uses the Autopointer to transfer a block of eight
data bytes from the endpoint 4 OUT buffer to internal 8051 memory.

Init: mov dptr, ZAUTOPTRH
mov a,#HIGH(OUT4BUF) ; High portion of OUT4BUF buffer
movx @dptr,a ; Load OUTOPTRH
mov dptr, #AUTOPTRL
mov a,#LOW(OUT4BUF) ; Low portion of OUT4BUF buffer address
movx @dptr,a ; Load AUTOPTRL
mov dptr, #AUTODATA ; point to the ‘fifo’ register
mov r0,#80H ; store data in upper 128 bytes of 8051 RAM
mov r2,#8 ; loop counter
loop: movx a,@dptr ; get a ‘fifo’ byte
mov @r0,a ; store it
inc r0 ; bump destination pointer
; (NOTE: no ‘inc dptr required here)
djnz r2,loop ; do it eight times

Figure 6-13. Use of the Autopointer

As the comment in the penultimate line indicates, the Autopointer saves an “inc dptr”
instruction that would be necessary if one of the 8051 data pointers were used to access
the OUT4BUF RAM data. This improves the transfer time.

Note

Fastest bulk transfer speed in and out of EZ-USB bulk buffers is achieved when the
Autopointer is used in conjunction with the EZ-USB Fast Transfer mode.

As described in Chapter 8, "EZ-USB Isochronous Transfers," the EZ-USB core provides a
method for transferring data directly between an internal FIFO and external memory in
two 8051 cycles (333 ns). The fast transfer mode is active for bulk data when:

* The 8051 sets FBLK=1 in the FASTXFR register, enabling fast bulk transfers,
* The 8051 DPTR points to the AUTODATA register, and
* The 8051 executes a “movx a,@dptr” or a “movx @dptr,a” instruction.
The 8051 code example in Figure 6-14 shows a transfer loop for moving 64 bytes of exter-

nal FIFO data into the endpoint 4-IN buffer. The FASTXFR register bits are explained in
Chapter 8, "EZ-USB Isochronous Transfers."

EZ-USB TRM v1.9 Chapter 6. EZ-USB CPU Page 6-23

Note

The Autopointer works only with internal program/data RAM. It does not work with
memory outside the chip, or with internal RAM that is made available when ISO-
DISAB=1. See Section 8.9.1, "Disable ISO" for a description of the ISODISAB bit

mov dptr,#FASTXFR ; set up the fast BULK transfer mode

mov a,#01000000b ; FBLK=1, RPOL=0, RM1-0 = 00

movx @dptr,a ; load the FASTXFR register
Init: mov dptr,#AUTOPTRH

mov a,HIGH(IN4BUF) ; High portion of INABUF

movx @dptr,a ; Load AUTOPTRH

mov dptr,#AUTOPTRL

mov a,LOW(IN4BUF) ; Low portion of INABUF buffer address

movx @dptr,a ; Load AUTOPTRH

mov dptr,#AUTODATA ; point to the ‘fifo’ register

mov r7,#8 ; r7 is loop counter, 8 bytes per loop
loop: movx @dptr,a ; (2) write IN ‘fifo’ using byte from external bus

movx @dptr,a ; (2) again

movx @dptr,a ; (2) again

movx @dptr,a ; (2) again

movx @dptr,a ; (2) again

movx @dptr,a ; (2) again

movx @dptr,a ; (2) again

movx @dptr,a ; (2) again

djnz r7,loop ; (3) do eight more, r7’ times

Figure 6-14. 8051 Code to Transfer External Data to a Bulk IN Buffer

This transfer loop takes 19 cycles per loop times 8 passes, or 22 ms (152 cycles). A USB
bulk transfer of 64 bytes takes more that 42 ms (64*8*83 ns) of bus time to transfer the
data bytes to or from the host. This calculation neglects USB overhead time.

From this simple example, it is clear that by using the Autopointer and the EZ-USB Fast
Transfer mode, the 8051 can transfer data in and out of EZ-USB endpoint buffers signifi-
cantly faster than the USB can transfer it to and from the host. This means that the EZ-
USB chip should never be a speed bottleneck in a USB system. It also gives the 8051
ample time for other processing duties between endpoint buffer loads.

The Autopointer can be used to quickly move data anywhere in RAM, not just the bulk
endpoint buffers. For example, it can be used to good effect in an application that calls for
transferring a block of data into RAM, processing the data, and then transferring the data
to a bulk endpoint buffer.

Page 6-24 Chapter 6. EZ-USB CPU EZ-USB TRM v1.9

7 EZ-USB Endpoint Zero

7.1 Introduction

Endpoint Zero has special significance in a USB system. Itis a CONTROL endpoint, and

is required by every USB device. Only CONTROL endpoints accept special SETUP

tokens that the host uses to signal transfers that deal with device control. The USB host
sends a repertoire of standard device requests over endpoint zero. These standard requests
are fully defined in Chapter 9 of the USB Specification. This chapter describes how the
EZ-USB chip handles endpoint zero requests.

Because the EZ-USB chip can enumerate without firmware (see Chapter 5, "EZ-USB
Enumeration and ReNumeratiati), the EZ-USB core contains logic to perform enumer-
ation onits own. This hardware assist of endpoint zero operations is make available to the
8051, simplifying the code required to service device requests. This chapter deals with
8051 control of endpoint zero (ReNum=1, Chapter 5), and describes EZ-USB resources
such as the Setup Data Pointer that simplify 8051 code that handles endpoint zero
requests.

Endpoint zero is the only CONTROL endpoint in the EZ-USB chip. Although CON-

TROL endpoints aréi-directional the EZ-USB chip provides two 64-byte buffers,

INOBUF and OUTOBUF, which the 8051 handles exactly like bulk endpoint buffers for

the data stages of a CONTROL transfer. A second 8-byte buffer, SETUPDAT, which is
unique to endpoint zero, holds data that arrives in the SETUP stage of a CONTROL trans-
fer. This relieves the 8051 programmer of having to keep track of the three CONTROL
transfer phases—SETUP, DATA, and STATUS. The EZ-USB core also generates separate
interrupt requests for the various transfer phases, further simplifying code.

The INOBUF and OUTOBUF buffers have two special properties that result from being
used by CONTROL endpoint zero:

* Endpoints 0-IN and 0-OUT are always valid, so the valid bits (LSB of INO7VAL
and OUTO7VAL registers) are permanently set to 1. Writing any value to these
two bits has no effect, and reading these bits always returns a 1.

* Endpoint 0 cannot be paired with endpoint 1, so there is no pairing bit in the USB-
PAIR register for endpoint O or 1.

EZ-USB TRM v1.9 Chapter 7. EZ-USB CPU Page 7-1

7.2 Control Endpoint EPO

<+«—SETUP Stage——»

S allell ¢ D C
E A R A
D|| N|| R
T T C C
D|| D|| C
U rRilpll s A 1 K
P 0 6
Token Packet Data Packet H/S Pkt
L SUTOK Interrupt T;SUDAVInterrupt
Core sets HSNAK=1
< DATA Stage >
EEE el Ta ER(E el T
I[| D|| N|| R T Payload c c || D|| N|| R T Payload c c
N|| D|| D|| C Data N|| D|| D|| C Data
R|| P|| 5 A 1 K Rl Pl 5 A 1 K
1 6 0 6
Token Packet Data Packet H/S Pk Token Packet Data Packet /S Pkt
L EPO-IN Interrupt EPO-IN Interrupt J
< STATUS Stage >
D|| C D|| C
ol AL EI |l all rI|] S| N ol A EIL Al ||| |A
D|| N|| R Y D|| N|| R
U T|| C A U T|| C C
Tl PP all 2] N /[2| Bl CIf]] Al 1 K
R|| P|| 5 116 C R|| P|| 5 116
Token Packet) (Data P H/S Pk T Token Packet) (Data Pky \H/S Pk
8051 clears HSNAK bit (writes 1 to it)

or sets the STALL bit.

Figure 7-1. A USB Control Transfer (This One Has a Data Stage)

Endpoint zero accepts a special SETUP packet, which contains an 8-byte data structure
that provides host information about the CONTROL transaction. CONTROL transfers
include a final STATUS phase, constructed from standard PIDs (IN/OUT, DATA1, and
ACK/NAK).

Some CONTROL transactions include all required data in their 8-byte SETUP Data
packet. Other CONTROL transactions require more OUT data than will fit into the eight
bytes, or require IN data from the device. These transactions use standard bulk-like trans-
fers to move the data. Note in Figure 7-1 that the “DATA Stage” looks exactly like a bulk
transfer. As with BULK endpoints, the endpoint zero byte count registers must be loaded
to ACK the data transfer stage of a CONTROL transfer.

Page 7-2 Chapter 7. EZ-USB CPU EZ-USB TRM v1.9

The STATUS stage consists of an empty data packet with the opposite direction of the data
stage, or an IN if there was no data stage. This empty data packet gives the device a
chance to ACK or NAK the entire CONTROL transfer. The 8051 writes a “1” to a bit call
HSNAK (Handshake NAK) to clear it and instruct the EZ-USB core to ACK the STATUS
stage.

The HSNAK bit is used to hold off completing the CONTROL transfer until the device

has had time to respond to a request. For example, if the host issues a Set_Interface
request, the 8051 performs various housekeeping chores such as adjusting internal modes
and re-initializing endpoints. During this time the host issues handshake (STATUS stage)
packets to which the EZ-USB core responds with NAKs, indicating “busy.” When the

8051 completes the desired operation, it sets HSNAK=1 (by writing a “1” to the bit) to ter-
minate the CONTROL transfer. This handshake prevents the host from attempting to use
a partially configured interface.

To perform an endpoint stall for the DATA or STATUS stage of an endpoint zero transfer
(the SETUP stage can never stall), the 8051 must set both the STALL and HSNAK bits for
endpoint zero.

Some CONTROL transfers do not have a DATA stage. Therefore the 8051 code that pro-
cesses the SETUP data should check the length field in the SETUP data (in the 8-byte
buffer at SETUPDAT) and arm endpoint zero for the DATA phase (by loading INOBC or
OUTOBC) only if the length is non-zero.

Two 8051 interrupts provide notification that a SETUP packet has arrived, as shown in
Figure 7-2.

8 bytes SETUPDAT

Setup 8 RAM
Data bytes

t sutok * supbav

Interrupt Interrupt

Figure 7-2. The Two Interrupts Associated with EPO CONTROL Transfers

The EZ-USB core sets the SUTOKIR bit (SETUP Token Interrupt Request) when the EZ-
USB core detects the SETUP token at the beginning of a CONTROL transfer. This inter-
rupt is normally used only for debug.

The EZ-USB core sets the SUDAVIR bit (Setup Data Available Interrupt Request) when
the eight bytes of SETUP data have been received error-free and transferred to eight EZ-

EZ-USB TRM v1.9 Chapter 7. EZ-USB CPU Page 7-3

USB registers starting at SETUPDAT. The EZ-USB core takes care of any re-tries if it
finds any errors in the SETUP data. These two interrupt request bits are set by the EZ-
USB core, and must be cleared by firmware.

An 8051 program responds to the SUDAV interrupt request by either directly inspecting
the eight bytes at SETUPDAT or by transferring them to a local buffer for further process-
ing. Servicing the SETUP data should be a high 8051 priority, since the USB Specifica-
tion stipulates that CONTROL transfers must always be accepted and never NAKd. Itis
therefore possible that a CONTROL transfer could arrive while the 8051 is still servicing

a previous one. In this case the previous CONTROL transfer service should be aborted
and the new one serviced. The SUTOK interrupt gives advance warning that a new CON-
TROL transfer is about to over-write the eight SETUPDAT bytes.

If the 8051 stalls endpoint zero (by setting the EPOSTALL and HSNAK bits to 1), the EZ-
USB core automatically clears this stall bit when the next SETUP token arrives.

Like all EZ-USB interrupt requests, the SUTOKIR and SUDAVIR bits can be directly
tested and reset by the CPU (they are reset by writing a “1”). Thus, if the corresponding
interrupt enable bits are zero, the interrupt request conditions can still be directly polled.

Figure 7-3 shows the EZ-USB registers that deal with CONTROL transactions over EPO.

Registers Associated with Endpoint Zero
For handling SETUP transactions

Initialization Data transfer
SETUPDAT
USBIEN | | [] [o] 8 Bytes of
SETUP Data
Global Enable

T=Setup Token SUTOKIE
D=Setup Data SUDAVIE

Interrupt Control
SUDPTRH‘15‘14‘13‘12‘11‘10‘ 9 ‘ 8 ‘
USBIRQ‘ \T\ \D\
InterruptRequest SUDPTRL‘ 7 ‘ 6 ‘ 5 ‘ 2 ‘ 3 ‘ 2 ‘ 1 ‘ 0 ‘
T=Setup Token SUTOKIR
D=Setup Data SUDAVIR

Figure 7-3. Registers Associated with EPO Control Transfers

These registers augment those associated with normal bulk transfers over endpoint zero,
which are described in Chapter 6, "EZ-USB Bulk Transfers."

Page 7-4 Chapter 7. EZ-USB CPU EZ-USB TRM v1.9

Two bits in the USBIEN (USB Interrupt Enable) register enable the SETUP Token
(SUTOKIE) and SETUP Data interrupts. The actual interrupt request bits are in the
USBIRQ (USB Interrupt Requests) register. They are called STOKIR (SETUP Token
Interrupt Request) and SUDAVIR (SETUP Data Interrupt Request).

The EZ-USB core transfers the eight SETUP bytes into eight bytes of RAM at SETUP-
DAT. A 16-bit pointer, SUDPTRHY/L gives hardware assistance for handling CONTROL
IN transfers, in particular, the USB Get_Descriptor requests described later in this chapter.

7.3 USB Requests

TheUniversal Serial Bus Specification Version 1.1, Chapter 9, "USB Device Framework"
defines a set oftandard Device Requestd/hen the 8051 is in control (ReNum=1), the
EZ-USB core handles one of these requests (Set Address) directly, and relies on the 8051
to support the others. The 8051 acts on device requests by decoding the eight bytes con-
tained in the SETUP packet. Table 7-1 shows the meaning of these eight bytes.

Table 7-1. The Eight Bytesin a USB SETUP Packet

Byte Field Meaning
0 |bmRequestType | Request Type, Direction, and Recipient
1 | bRequest The actual request (see Table 7-2)
2 |wvalueL Word-size value, varies according to bRequest
3 |wValueH
4 | windexL Word-size field, varies according to bRequest
5 |windexH
6 |wLengthL Number of bytes to transfer if there is a data phase
7 | wLengthH

TheByte column in the previous table shows the byte offset from SETUPDAT. Hiélel
column shows the different bytes in the request, where the “bm” prefix means bit-map,

“b” means byte, and “w” means word (16 bits). Table 7-2 shows the different values
defined for bRequest, and how the 8051 responds to each request. The remainder of this
chapter describes each of the Table 7-2 requests in detail.

Note

Table 7-2 applies when ReNum=1, which signifies that the 8051, and not the EZ-USB
core, handles device requests. Table 5-2 shows how the core handles each of these
device requests when ReNum=0, for example when the chip is first powered and the
8051 is not running.

EZ-USB TRM v1.9 Chapter 7. EZ-USB CPU Page 7-5

Table 7-2. How the 8051 Handles USB Device Requests (ReNum=1)

bRequest Name

Action

8051 Response

0x00 Get Status

SUDAV Interrupt

Supply RemWU, SelfPwr or Stall bits

0x01 Clear Feature

SUDAV Interrupt

Clear RemWU, SelfPwr or Stall bits

0x02 (reserved) none Stall EPO

0x03 Set Feature SUDAV Interrupt Set RemWU, SelfPwr or Stall bits
0x04 (reserved) none Stall EPO

0x05 Set Address Update FNADDR register | none

0x06 Get Descriptor

SUDAV Interrupt

Supply table data over EPO-IN

0x07 Set Descriptor

SUDAV Interrupt

Application dependent

0x08 Get Configuration

SUDAV Interrupt

Send current configuration number

0x09 Set Configuration

SUDAV Interrupt

Change current configuration

0x0A Get Interface

SUDAV Interrupt

Supply alternate setting No. from RAM

0x0B Set Interface

SUDAV Interrupt

Change alternate setting No.

0x0C Sync Frame

SUDAV Interrupt

Supply a frame number over EPO-IN

Vendor Requests

0xAO0 (Firmware Load)

Up/Download RAM

0xAl - OXAF

SUDAV Interrupt

Reserved by Cypress Semiconductor

All except 0xAO

SUDAV Interrupt

Depends on application

In the ReNumerated condition (ReNum=1), the EZ-USB core passes all USB requests
except Set Address onto the 80%& the SUDAV interrupt. This, in conjunction with the
USB disconnect/connect feature, allows a completely new and different USB device
(yours) to be characterized by the downloaded firmware.

The EZ-USB core implements one vendor-specific request, namely “Firmware Load,”
0xAO0. (The bRequest value of OxAO is valid only if byte O of the request, bmRequest-
Type, is also “x10xxxxx,” indicating a vendor-specific request.) The load request is valid
at all times, so even after ReNumeration the load feature maybe used. If your application
implements vendor-specific USB requests, and yonatavish to use the Firmware Load
feature, be sure to refrain from using the bRequest value 0xAO for your custom requests.
The Firmware Load feature is fully described in Chapter 5, "EZ-USB Enumeration and

ReNumeration!."

Note

To avoid future incompatibilities, vendor requests AO-AF (hex) are reserved by Cy

Semiconductor.

Page 7-6

Chapter 7. EZ-USB CPU

EZ-USB TRM v1.9

press

7.3.1 Get Status

The USB Specification version 1.0 defines three USB status requests. A fourth request, to
an interface, is indicated in the spec as “reserved.” The four status requests are:

* Remote Wakeup (Device request)
» Self-Powered (Device request)

» Stall (Endpoint request)

* Interface request (“reserved”)

The EZ-USB core activates the SUDAV interrupt request to tell the 8051 to decode the
SETUP packet and supply the appropriate status information.

8 bytes SETUPDAT
etup 8 RAM
Data bytes

4 supav

Interrupt

Bytes

INOBUF

64-byte
Buffer

INOBC

Figure 7-4. Data Flow for a Get_Status Request

EZ-USB TRM v1.9 Chapter 7. EZ-USB CPU Page 7-7

As Figure 7-4 illustrates, the 8051 responds to the SUDAV interrupt by decoding the eight
bytes the EZ-USB core has copied into RAM at SETUPDAT. The 8051 answers a
Get_Status request (bRequest=0) by loading two bytes into the INOBUF buffer and load-
ing the byte count register INOBC with the value “2.” The EZ-USB core transmits these
two bytes in response to an IN token. Finally, the 8051 clears the HSNAK bit (by writing
“1” to it) to instruct the EZ-USB core to ACK the status stage of the transfer.

The following tables show the eight SETUP bytes for Get_Status requests.

Table 7-3. Get Status-Device (Remote Wakeup and Self-Powered Bits)

Byte Field Value Meaning 8051 Response
0 | bmRequestType 0x80 |IN, Device
1 | bRequest 0x00 |“Get Status” Load two bytes into INOBUF
2 | wValueL 0x00
3 | wValueH 0x00 Byte 0: bit 0 = Self Powered bit
4 | windexL 0x00 - bit 1 = Remote Wakeup
5 | windexH 0x00 Byte 1: zero
6 | wLengthL 0x02 | Two bytes requested
7 | wLengthH 0x00

Get_Statuddevicequeries the state of two bits, Remote Wakeup and Self-Powered. The
Remote Wakeup bit indicates whether or not the device is currently enabled to request
remote wakeup. Remote wakeup is explained in Chapter 11, "EZ-USB Power Manage-
ment." The Self-Powered bit indicates whether or not the device is self-powered (as
opposed to USB bus-powered).

The 8051 returns these two bits by loading two bytes into INOBUF, and then loading a
byte count of two into INOBC.

Table 7-4. Get Status-Endpoint (Stall Bits)

Byte Field Value Meaning 8051 Response
0 | bmRequestType 0x82 |IN, Endpoint Load two bytes into INOBUF
1 | bRequest 0x00 |“Get Status” Byte 0: bit 0 = Stall bit for EP(n)
2 | wValueL 0x00 Byte 1: zero
3 | wValueH 0x00
4 | windexL EP | Endpoint Number EP(n):
5 | windexH 0x00 0x00-0x07: OUT0-OUT7
6 | wLengthL 0x02 | Two bytes requested | 0x80-0x87: INO-IN7
7 | wLengthH 0x00

Page 7-8 Chapter 7. EZ-USB CPU EZ-USB TRM v1.9

Each bulk endpoint (IN or OUT) has a STALL bit in its Control and Status register (b

it 0).

If the CPU sets this bit, any requests to the endpoint return a STALL handshake rather
than ACK or NAK. The Get Status-Endpoint request returns the STALL state for the end-
point indicated in byte 4 of the request. Note that bit 7 of the endpoint number EP (byte 4)

specifies direction.

Endpoint zero is a CONTROL endpoint, which by USB definitiomislirectional
Therefore, it has only one stall bit.

About STALL

The USB STALL handshake indicates that something unexpected has happened.
instance, if the host requests an invalid alternate setting or attempts to send data t
existent endpoint, the device responds with a STALL handshake over endpoint ze
instead of ACK or NAK.

Stalls are defined for all endpoint types except ISOCHRONOUS, which do not em
handshakes. Every EZ-USB bulk endpoint has its own stall bit. The 8051 sets thé¢
condition for an endpoint by setting the stall bit in the endpoint’s CS register. The

tells the 8051 to set or clear the stall condition for an endpoint using the Set_Featur
and Clear_Feature/Stall requests.

An example of the 8051 setting a stall bit would be in a routine that handles endpag
zero device requests. If an undefined or non-supported request is decoded, the 8
should stall EPO. (EPO has a single stall bit because it is a bi-directional endpoint,

Once the 8051 stalls an endpoint, it should not remove the stall until the host issue
Clear_Feature/Stall request. An exception to this rule is endpoint O, which reports
condition only for the current transaction, and then automatically clears the stall c¢
tion. This prevents endpoint 0, the default CONTROL endpoint, from locking out d¢
requests.

EZ-USB TRM v1.9 Chapter 7. EZ-USB CPU Page 7-9

For
0 a hon-
ro

ploy

> stall
host
e/Stall

int
051
)

’S a
a stall
yndi-
bvice

Table 7-5. Get Status-Interface

Byte Field Value Meaning 8051 Response
0 | bmRequestType 0x81 |IN, Endpoint Load two bytes into INOBUF
1 | bRequest 0x00 |“Get Status” Byte 0 : zero
2 | wValueL 0x00 Byte 1: zero
3 | wValueH 0x00
4 | windexL 0x00
5 | windexH 0x00
6 | wLengthL 0x02 | Two bytes requested
7 | wLengthH 0x00

Get_Status/Interface is easy: the 8051 returns two zero bytes through INOBUF and clears
the HSNAK bit. The requested bytes are shown as “Reserved (Reset to zero)” in the USB
Specification

7.3.2 Set Feature

Set Feature is used to enable remote wakeup or stall an endpoint. No data stage is
required.

Table 7-6. Set Feature-Device (Set Remote Wakeup Bit)

Byte Field Value Meaning 8051 Response
0 | bmRequestType 0x00 | OUT, Device Set the Remote Wakeup bit
1 | bRequest 0x03 | “Set Feature”
2 | wValueL 0x01 | Feature Selector:
Remote Wakeup
3 | wValueH 0x00
4 | windexL 0x00
5 |windexH 0x00
6 | wLengthL 0x00
7 | wLengthH 0x00

The only Set_Feature/Device request presently defined in the USB specification is to set
the remote wakeup bit. This is the same bit reported back to the host as a result of a Get
Status-Device request (Table 7-3). The host uses this bit to enable or disable remote
wakeup by the device.

Page 7-10 Chapter 7. EZ-USB CPU EZ-USB TRM v1.9

Table 7-7. Set Feature-Endpoint (Stall)

Byte Field Value Meaning 8051 Response
0 | bmRequestType 0x02 | OUT, Endpoint Set the STALL bit for the
1 | bRequest 0x03 | “Set Feature” indicated endpoint:

2 |wValuel 0x00 | Feature Selector:
STALL
3 | wValueH 0x00
4 | windexL EP EP(n):
5 | windexH 0x00 0x00-0x07: OUTO-OUT7
6 | wLengthL 0x00 0x80-0x87: INO-IN7
7 | wLengthH 0x00

The only Set_Feature/Endpoint request presently defined in the USB Specification

is to

stall an endpoint. The 8051 should respond to this request by setting the stall bit in the
Control and Status register for the indicated endpoint EP (byte 4 of the request). The 8051
can either stall an endpoint on its own, or in response to the device request. Endpoint

stalls are cleared by the host Clear_Feature/Stall request.

The 8051 should respond to the Set_Feature/Stall request by performing the following

steps:

1. Setthe stall bit in the indicated endpoint’s CS register.

Reset the data toggle for the indicated endpoint.

a & WD

Set_Feature/Stall CONTROL transfer.

Steps 3 and 4 restore the stalled endpoint to its default condition, ready to send or

For an IN endpoint, clear the busy bit in the indicated endpoint’s CS register.
For an OUT endpoint, load any value into the endpoint’s byte count register.
Clear the HSNAK bit in the EPOCS register (by writing 1 to it) to terminate the

accept

data after the stall condition is removed by the host (using a Clear_Feature/Stall request).

These steps are also required when the host sends a Set_Interface request.

Data Toggles

The EZ-USB core automatically maintains the endpoint toggle bits to ensure data
rity for USB transfers. The 8051 should directly manipulate these bits only for a ve
limited set of circumstances:

» Set_Feature/Stall
» Set_Configuration
* Set_Interface

integ-
2ry

EZ-USB TRM v1.9 Chapter 7. EZ-USB CPU Page 7-11

7.3.3 Clear Feature

Clear Feature is used to disable remote wakeup or to clear a stalled endpoint.

Table 7-8. Clear Feature-Device (Clear Remote Wakeup Bit)

Byte Field Value Meaning 8051 Response
0 | bmRequestType 0x00 | OUT, Device Clear the remote wakeup bit
1 | bRequest 0x01 |“Clear Feature”
2 |wValuel 0x01 | Feature Selector:
Remote Wakeup
3 | wValueH 0x00
4 | windexL 0x00
5 | windexH 0x00
6 | wLengthL 0x00
7 | wLengthH 0x00

Table 7-9. Clear Feature-Endpoint (Clear Stall)

Byte Field Value Meaning 8051 Response
0 | bmRequestType 0x02 | OUT, Endpoint Clear the STALL bit for the
1 | bRequest 0x01 |“Clear Feature” indicated endpoint:

2 | wValueL 0x00 | Feature Selector:
STALL
3 | wValueH 0x00
4 | windexL EP EP(n):
5 | windexH 0x00 0x00-0x07: OUTO-OUT7
6 | wLengthL 0x00 0x80-0x87: INO-IN7
7 | wLengthH 0x00

If the USB device supports remote wakeup (as reported in its descriptor table when the
device is enumerated), the Clear_Feature/Remote Wakeup request disables the wakeup
capability.

The Clear_Feature/Stall removes the stall condition from an endpoint. The 8051 should
respond by clearing the stall bit in the indicated endpoint’s CS register.

7.3.4 Get Descriptor

During enumeration, the host queries a USB device to learn its capabilities and require-
ments using Get_Descriptor requests. Using tablekestriptorsthe device sends back

Page 7-12 Chapter 7. EZ-USB CPU EZ-USB TRM v1.9

(over EPO-IN) such information as what device driver to load, how many endpoints it has,
its different configurations, alternate settings it may use, and informative text strings about
the device.

The EZ-USB core provides a specttup Data Pointeto simplify 8051 service for
Get_Descriptor requests. The 8051 loads this 16-bit pointer with the beginning address of
the requested descriptor, clears the HSNAK bit (by writing “1” to it), and the EZ-USB

core does the rest.

<+«—SETUP Stage —»

\

2 Al E|| C D c
Ellp|| || R|| [[A] 8bwes |IR o SETUPDAT
T ol ol ¢ T|| Setup C (63
U rll pll 5 A Data 1 K
P 0 6
Token Packet Data Packet H/S Pkt
LSUDAV Interrupt
< DATA Stage >
EEIE <l T BRI <l .
|| D|| N|| R T Payload c c I || D|| N|| R T Payload c c
N|| D|| D|| C Data N|| D|| D|| C Data
rllpll 5 A 1 K rilpll s A 1 K
1 6 0 6
Token Packet Data Packet \ H/S Pkt Token Packet Data Pafket H/S Pkt
EPOIN EPOIN
Interrupt Interrupt
D|| C
D|| N|| R
U T||C C
D|| D|| C
T rIlpl s Alll K
1|6 27 bytes/
Token Packet J \Data Pkt) \H/S P

Figure 7-5. Using the Setup Data Pointer (SUDPTR) for Get_Descriptor Requests

Figure 7-5 illustrates use of the Setup Data Pointer. This pointer is implemented as two
registers, SUDPTRH and SUDPTRL. Most Get_Descriptor requests involve transferring
more data than will fit into one packet. In the Figure 7-5 example, the descriptor data con-
sists of 91 bytes.

EZ-USB TRM v1.9 Chapter 7. EZ-USB CPU Page 7-13

The CONTROL transaction starts in the usual way, with the EZ-USB core transferring the
eight bytes in the SETUP packet into RAM at SETUPDAT and activating the SUDAV
interrupt request. The 8051 decodes the Get_Descriptor request, and responds by clearing
the HSNAK bit (by writing “1” to it), and then loading the SUDPTR registers with the
address of the requested descriptor. Loading the SUDPTRL register causes the EZ-USB
core to automatically respond to two IN transfers with 64 bytes and 27 bytes of data using
SUDPTR as a base address, and then to respond to (ACK) the STATUS stage.

The usual endpoint zero interrupts, SUDAV and EPOIN, remain active during this auto-
mated transfer. The 8051 normally disables these interrupts because the transfer requires
no 8051 intervention.

Three types of descriptors are defined: Device, Configuration, and String.

7.3.4.1 Get Descriptor-Device

Table 7-10. Get Descriptobevice

Byte Field Value Meaning 8051 Response
0 | bmRequestType 0x80 |IN, Device Set SUDPTR H-L to start of
1 | bRequest 0x06 | “Get_Descriptor” Device Descriptor table in RAM
2 | wValueL 0x00
3 | wValueH 0x01 | Descriptor Type:
Device
4 | windexL 0x00
5 | windexH 0x00
6 | wLengthL LenL
7 | wLengthH LenH

As illustrated in Figure 7-5, the 8051 loads the 2-byte SUDPTR with the starting address
of the Device Descriptor table. When SUDPTRL is loaded, the EZ-USB core performs
the following operations:

1. Reads the requested number of bytes for the transfer from bytes 6 and 7 of the
SETUP packetl{enL andLenH in Table 7-11).

2. Reads the requested string’s descriptor to determine the actual string length.

3. Sends the smaller of (a) the requested number of bytes or (b) the actual number of
bytes in the string, over INOBUF using the Setup Data Pointer as a data table

Page 7-14 Chapter 7. EZ-USB CPU EZ-USB TRM v1.9

index. This constitutes the second phase of the three-phase CONTROL transfer.
The core Packetizes the data into multiple data transfers as necessary.

4. Automatically checks for errors and re-transmits data packets if necessary.

5. Responds to the third (handshake) phase of the CONTROL transfer to terminate
the operation.

The Setup Data Pointer can be used for any Get_Descriptor request; for example,
Get_Descriptor-String. It can also be used for vendor-specific requests (that you define),
as long as bytes 6-7 contain the number of bytes in the transfer (for step 1).

It is possible for the 8051 to dmanual CONTROL transfers, directly loading the

INOBUF buffer with the various packets and keeping track of which SETUP phase is in
effect. This would be a good USB training exercise, but not necessary due to the hardware
support built into the EZ-USB core for CONTROL transfers.

For DATA stage transfers of fewer than 64 bytes, moving the data into the INOBUF buffer
and then loading the EPOINBC register with the byte count would be equivalent to loading

the Setup Data Pointer. However, this would waste 8051 overhead because the Setup Data
Pointer requires no byte transfers into the INOBUF buffer.

7.3.4.2 Get Descriptor-Configuration

Table 7-11. Get DescriptoGonfiguration

Byte Field Value Meaning 8051 Response
0 | bmRequestType 0x80 |IN, Device Set SUDPTR H-L to start of
1 | bRequest 0x06 | “Get_Descriptor” Configuration Descriptor table in
2 | wValueL CFG | Config Number RAM
3 | wValueH 0x02 | Descriptor Type:
Configuration
4 | windexL 0x00
5 | windexH 0x00
6 | wLengthL LenL
7 | wLengthH LenH

EZ-USB TRM v1.9 Chapter 7. EZ-USB CPU Page 7-15

7.3.4.3 Get Descriptor-String

Table 7-12. Get Descripto®tring

Byte Field Value Meaning 8051 Response
0 | bmRequestType 0x80 |IN, Device Set SUDPTR H-L to start of
1 | bRequest 0x06 | “Get_Descriptor” Configuration Descriptor table in
2 | wValueL CFG | String Number RAM
3 | wValueH 0x02 | Descriptor Type:
String
4 | windexL 0x00 | (Language ID L)
5 | windexH 0x00 | (Language ID H)
6 | wLengthL LenL
7 | wLengthH LenH

Configuration and string descriptors are handled similarly to device descriptors. The 8051
firmware reads byte 2 of the SETUP data to determine which configuration or string is
being requested, loads the corresponding table pointer into SUDPTRH-L, and the EZ-
USB core does the rest.

7.3.5 Set Descriptor

Table 7-13. Set Descriptddevice

Byte Field Value Meaning 8051 Response
0 | bmRequestType 0x00 | OUT, Device Read device descriptor data over
1 | bRequest 0x07 |"“Set_Descriptor” OUTOBUF
2 |wValueL 0x00
3 | wValueH 0x01 | Descriptor Type:
Device
4 | windexL 0x00
5 | windexH 0x00
6 | wLengthL LenL
7 | wLengthH LenH

Page 7-16 Chapter 7. EZ-USB CPU EZ-USB TRM v1.9

Table 7-14. Set DescriptdZonfiguration

Byte Field Value Meaning 8051 Response
0 | bmRequestType 0x00 | OUT, Device Read configuration descriptor
1 | bRequest 0x07 | “Set_Descriptor” data over OUTOBUF
2 | wValueL 0x00
3 | wValueH 0x02 | Descriptor Type:
Configuration
4 | windexL 0x00
5 | windexH 0x00
6 | wLengthL LenL
7 | wLengthH LenH

Table 7-15. Set Descriptdstring

Byte Field Value Meaning 8051 Response
0 | bmRequestType 0x00 |IN, Device Read string descriptor data over
1 | bRequest 0x07 | “Get_Descriptor” OUTOBUF
2 | wValueL 0x00 | Config Number
3 | wValueH 0x03 | Descriptor Type:
String
4 | windexL 0x00 |(Language IDL)
5 | windexH 0x00 |(Language ID H)
6 | wLengthL LenL
7 | wLengthH LenH

The 8051 handles Set_Descriptor requests by clearing the HSNAK bit (by writing “1” to

it), then reading descriptor data directly from the OUTOBUF buffer. The EZ-USB core
keeps track of the number of byes transferred from the host into OUTOBUF, and compares
this number with the length field in bytes 6 and 7. When the proper number of bytes has
been transferred, the EZ-USB core automatically responds to the status phase, which is the
third and final stage of the CONTROL transfer.

Note

The 8051 controls the flow of data in the Data Stage of a Control Transfer. After the
8051 processes each OUT packet, it loads any value into the OUT endpoint’s byte count
register to re-arm the endpoint.

EZ-USB TRM v1.9 Chapter 7. EZ-USB CPU Page 7-17

Configurations, Interfaces, and Alternate Settings

Configurations, Interfaces, and Alternat-
A USB device has one or momanfigu-
ration. Only one configuration is active Config 1 Config 2
at any tlme High Power Low Power
A configuration has one or moister- m‘
face all of which are concurrently active.——4— A
Multiple interfaces allow different host- | corow interface 1. || inertace 2 o
side device drivers to be associated witl
different portions of a USB device. /\
. Alt Setting Alt Setting Alt Setting
Each interface has one or makernate 0 ! T
setting. Each alternate setting has a col ® &

lection of one or more endpoints.

This structure is a software model; the EZ-USB core takes no action when these s
change. However, the 80%iust re-initialize endpointswhen the host changes conf
urations or interfaces alternate settings.

As far as 8051 firmware is concerneds@nfigurationis simply a byte variable that ind
cates the current setting.

The host issues a Set_Coniguration request to select a configuration, and a
Get_Configuration request to determine the current configuration.

Page 7-18 Chapter 7. EZ-USB CPU EZ-USB TRM v1.9

ettings
g_

7.3.6 Set Configuration

Table 7-16. Set Configuration

Byte Field Value Meaning 8051 Response
0 | bmRequestType 0x00 | OUT, Device Read and stash byte 2, change
1 | bRequest 0x09 | “Set_Configuration” | configurations in firmware
2 |wValueL CFG | Config Number
3 | wValueH 0x00
4 | windexL 0x00
5 | windexH 0x00
6 | wLengthL 0x00
7 | wLengthH 0x00

When the host issues the Set_Configuration request, the 8051 saves the configuration
number (byte 2 in Table Table 7-16), performs any internal operations necessary to sup-
port the configuration, and finally clears the HSNAK bit (by writing “1” to it) to terminate
the Set_Configuration CONTROL transfer.

Note

After setting a configuration, the host issugst_Interfaceommands to set up the var
ous interfaces contained in the configuration.

7.3.7 Get Configuration

Table 7-17. Get Configuration

Byte Field Value Meaning 8051 Response
0 | bmRequestType 0x80 |IN, Device Send CFG over INOBUF after
1 | bRequest 0x08 |“Get_Configuration” | re-configuring
2 | wValueL 0x00
3 | wValueH 0x00
4 | windexL 0x00
5 | windexH 0x00
6 | wLengthL 1 |LenL
7 | wLengthH 0 |LenH

The 8051 returns the current configuration number. It loads the configuration number into
EPOIN, loads a byte count of one into EPOINBC, and finally clears the HSHAK bit (by
writing “1” to it) to terminate the Set_Configuration CONTROL transfer.

EZ-USB TRM v1.9 Chapter 7. EZ-USB CPU Page 7-19

7.3.8 Set Interface

This confusingly named USB command actually sets and readsdtteckate setting$or
a specified interface.

USB devices can have multiple concurrent interfaces. For example a device may have an
audio system that supports different sample rates, and a graphic control panel that supports
different languages. Each interface has a collection of endpoints. Except for endpoint O,
which each interface uses for device control, endpoints may not be shared between inter-
faces.

Interfaces may report alternate settings in their descriptors. For example, the audio inter-
face may have setting 0, 1, and 2 for 8-KHz, 22-KHz, and 44-KHz sample rates, and the
panel interface may have settings 0 and 1 for English and Spanish. The Set/Get_Interface
requests select between the various alternate settings in an interface.

Table 7-18. Set Interface (Actually, Set Alternate Setting AS for Interface IF)

Byte Field Value Meaning 8051 Response
0 | bmRequestType 0x00 | OUT, Device Read and stash byte 2 (AS) for
1 | bRequest 0X0B | “Set_Interface” Interface IF, change setting for
2 |wValueL AS | Alt Setting Number | Interface IF in firmware
3 | wValueH 0x00
4 | windexL IF | Forthis interface
5 | windexH 0x00
6 | wLengthL 0x00
7 | wLengthH 0x00

The 8051 should respond to a Set_Interface request by performing the following steps:

» Perform the internal operation requested (such as adjusting a sampling rate).
* Reset the data toggles for every endpoint in the interface.
* For anIN endpoint, clear the busy bit for every endpoint in the interface.

* Foran OUT endpoint, load any value into the byte count register for every end-
point in the interface.

» Clear the HSNAK bit (by writing “1” to it) to terminate the Set_Feature/Stall
CONTROL transfer.

Page 7-20 Chapter 7. EZ-USB CPU EZ-USB TRM v1.9

7.3.9 Get Interface

Table 7-19. Get Interface (Actually, Get Alternate Setting AS for interface IF)

Byte Field Value Meaning 8051 Response
0 | bmRequestType 0x81 |IN, Device Send AS for Interface IF over
1 | bRequest Ox0A |“Get_Interface” OUTOBUF (1 byte)
2 | wValueL 0x00
3 | wValueH 0x00
4 | windexL IF |Forthis interface
5 | windexH 0x00
6 | wLengthL 1 |LenL
7 | wLengthH 0 |(LenH

The 8051 simply returns the alternate setting for the requested interface IF, and clears the
HSNAK bit by writing “1” to it.

7.3.10 Set Address

When a USB device is first plugged in, it responds to device address 0 until the host
assigns it a unique address using the Set_Address request. The EZ-USB core copies this
device address into the FNADDR (Function Address) register, and subsequently responds
only to requests to this address. This address is in effect until the USB device is
unplugged, the host issues a USB Reset, or the host powers down.

The FNADDR register can be read, but not written by the 8051. Whenever the EZ-USB
core ReNumeratés, it automatically resets the FNADDR to zero allowing the device to
come back asew

An 8051 program does not need to know the device address, because the EZ-USB core

automatically responds only to the host-assigned FNADDR value. The EZ-USB core
makes it readable by the 8051 for debug/diagnostic purposes.

EZ-USB TRM v1.9 Chapter 7. EZ-USB CPU Page 7-21

7.3.11 Sync Frame

Table 7-20. Sync Frame

Byte Field Value Meaning 8051 Response
0 | bmRequestType 0x82 |IN, Endpoint Send a frame number over
1 bRequest 0x0C | “Sync_Frame” INOBUF to synchronize endpoint
2 | wValueL 0x00 EP
3 | wValueH 0x00
4 | windexL EP | Endpoint number
5 | windexH 0x00 EP(n):
6 | wLengthL 2 LenL 0x08-0x0F: OUT8-0UT15
7 | wLengthH 0 |LenH 0x88-0x8F: IN8-IN15

The Sync_Frame request is used to establish a marker in time so the host and USB device
can synchronize multi-frame transfers over isochronous endpoints.

Suppose an isochronous transmission consists of a repeating sequence of five 300 byte
packets transmitted from host to device over EP8-OUT. Both host and device maintain
sequence counters that count repeatedly from 1 to 5 to keep track of the packets inside a
transmission. To start up in sync, both host and device need to reset their counts to 1 at the
same time (in the same frame).

To get in sync, the host issues the Sync_Frame request with EP=EP-OUT (byte 4). The
8051 firmware responds by loading INOBUF with a two-byte frame count for some future
time; for example, the current frame plus 20. This marks frame “current+20” as the sync
frame, during which both sides will initialize their sequence countersto 1. The 8051 reads
the current frame count in the USBFRAMEL and USBFRAMEH registers.

Multiple isochronous endpoints can be synchronized in this manner. The 8051 keeps sep-
arate internal sequence counts for each endpoint.

About USB Frames

The USB hostissues a SOF (Start Of Frame) packet once every millisecond. Every SOF
packet contains an 11-bit (mod-2048) frame number. The 8051 services all isochronous
transfers at SOF time, using a single SOF interrupt request and vector. If the EZ-USB
core detects a missing SOF packet, it uses an internal counter to generate the SQF inter-
rupt.

Page 7-22 Chapter 7. EZ-USB CPU EZ-USB TRM v1.9

7.3.12 Firmware Load
The USB endpoint zero protocol provides a mechanism for mixing vendor-specific

requests with the previously described standard device requests. Bits 6:5 of the bmRe-
guest field are set to 00 for a standard device request, and to 10 for a vendor request.

Table 7-21. Firmware Download

Byte Field Value Meaning 8051 Response
0 | bmRequestType 0x40 | Vendor Request, OUT | None required

1 | bRequest 0XA0 | “Firmware Load”

2 |wValueL AddrL | Starting address

3 |wValueH AddrH

4 | windexL 0x00

5 |windexH 0x00

6 | wLengthL LenL | Number of bytes

7 | wLengthH LenH

Table 7-22. Firmware Upload

Byte Field Value Meaning 8051 Response

0 | bmRequestType 0xCO |Vendor Request, IN None Required

1 | bRequest 0XA0 | “Firmware Load”

2 |wValueL AddrL | Starting address

3 |wValueH AddrH

4 | windexL 0x00

5 |windexH 0x00

6 |wLengthL LenL | Number of Bytes

7 | wLengthH LenH

The EZ-USB core responds to two endpoint zero vendor requests, RAM Download and
RAM Upload. These requests are active in all modes (ReNum=0 or 1).

Because bit 7 of the first byte of the SETUP packet specifies direction, only one bRequest
value (0xAO0) is required for the upload and download requests. These RAM load com-
mands are available to any USB device that uses the EZ-USB chip.

A host loader program typically writes 0x01 to the CPUCS register to put the 8051 into
RESET, loads all or part of the EZ-USB internal RAM with 8051 code, and finally reloads
the CPUCS register with 0 to take the 8051 out of RESET. The CPUCS register is the
only USB register that can be written using the Firmware Download command.

EZ-USB TRM v1.9 Chapter 7. EZ-USB CPU Page 7-23

Page 7-24 Chapter 7. EZ-USB CPU EZ-USB TRM v1.9

8 EZ-USB Isochronous Transfers

8.1 Introduction

Isochronous endpoints typically handle time-critical, streamed data that is delivered or
consumed in byte-sequential order. Examples might be audio data sent to a DAC over
USB, or teleconferencing video data sent from a camera to the host. Due to the byte-
sequential nature of this data, the EZ-USB chip makes isochronous data available as a sin-
gle byte that represents the head or tail of an endpoint FIFO.

The EZ-USB chips that support isochronous transfers implement sixteen isochronous end-
points, IN8-IN15 and OUT8-OUT15. 1,024 bytes of FIFO memory may be distributed

over the 16 endpoint addresses. FIFO sizes for the isochronous endpoints are programma-
ble.

OUTNDATA Register [« 8051 FIFO
n=8-15
() SOFT
usB
USB FIFO ouT
Data

INNDATA Register }—» 8051 FIFO

n=8-15
() SOFl
usB

USB FIFO IN
Data

Figure 8-1. EZ-USB Isochronous Endpoints 8-15

The 8051 reads or writes isochronous data using sixteen FIFO data registers, one per end-
point. These FIFO registers are shown in Figure 8-1 as INNDATA (Endpoint n IN Data)
and OUTNnDATA (Endpoint n OUT Data).

The EZ-USB core provides a total of 2,048 bytes of FIFO memory (1,024 bytes, double-
buffered) for ISO endpoints. This memory is in addition to the 8051 program/data mem-
ory, and normally exists outside of the 8051 memory space. The 1,024 FIFO bytes may be
divided among the sixteen isochronous endpoints. The 8051 writes sixteen EZ-USB reg-
isters to allocate the FIFO buffer space to the isochronous endpoints. The 8051 also sets
endpoint validbits to enable isochronous endpoints.

EZ-USB TRM v1.9 Chapter 8. EZ-USB CPU Page 8-1

8.2 Isochronous IN Transfers

IN transfers travel from device to host. Figure 8-2 shows the EZ-USB registers and bits
associated with isochronous IN transfers.

Registers Associated with an ISO IN endpoint
(EP8IN shown as example)

~—— |Initialization ~ Data transfer ——
INISOVAL\15\14\13\12\11\10\ 9 ‘ s‘ |N8DATA\ 7 ‘ 6 ‘ 5 ‘ 4 ‘ 3 ‘ 2 ‘ 1 ‘ o‘
Endpoint Valid (1=valid) Data to USB

INSADDR ‘AQ‘AB‘A?‘A6‘A5‘A4‘ 0 ‘ 0 ‘
FIFO Start Address (see text)

USBIRQ| 7 |6 |s|4a]a|2]1]0]
SOFIR (1=clear request)
\ /

USBPAIR‘7‘6‘5‘4‘3‘2‘1‘0‘
ISOSENDO (see text)

USBIEN | 7 |6][5 [4]a]2]1]0
SOFIE (1=enabled)

Figure 8-2. Isochronous IN Endpoint Registers

8.2.1 Initialization
To initialize an isochronous IN endpoint, the 8051 performs the following:

» Sets the endpoint valid bit for the endpoint.

» Sets the endpoint’s FIFO size by loading a starting address (Section 8.4, "Setting
Isochronous FIFO Sizes").

» Sets the ISOSENDO bit in the USBPAIR register for the desired response.

* Enables the SOF interrupt. All isochronous endpoints are serviced in response to
the SOF interrupt.

Page 8-2 Chapter 8. EZ-USB CPU EZ-USB TRM v1.9

The EZ-USB core uses the ISOSENDO bit to determine what to do if:

* The 8051 does not load any bytes to an INNDATA register during the previous
frame, and

* AnIN token for that endpoint arrives from the host.

If ISOSENDO=0 (the default value), the EZ-USB core does not respond to the IN token.
If ISOSENDO=1, the EZ-USB core sends a zero-length data packet in response to the IN
token. Which action to take depends on the overall system design. The ISOSENDO bit
applies to all of the isochronous IN endpoints, EP8IN through EP15IN.

8.2.2 IN Data Transfers

When an SOF interrupt occurs, the 8051 is presented with empty IN FIFOs that it fills
with data to be transferred to the host during the next frame. The 8051 has 1 ms to transfer
data into these FIFOs before the next SOF interrupt arrives.

To respond to the SOF interrupt, the 8051 clears the USB interrupt (8051 INT2), and
clears the SOFIR (Start Of Frame Interrupt Request) bit writing a “1” to it. Then, the 8051
loads data into the appropriate isochronous endpoint. The EZ-USB core keeps track of the
number of bytes the 8051 loads to each INNDATA register, and subsequently transfers the
correct number of bytes in response to the USB IN token during the next frame.

The EZ-USB FIFO swap occurs every SOF, even if during the previous frame the host did
not issue an IN token to read the isochronous FIFO data, or if the host encountered an
error in the data. USB isochronous data haseatyy mechanism like bulk data.

8.3 Isochronous OUT Transfers

OUT transfers travel from host to device. Figure 8-3 shows the EZ-USB registers and bits
associated with isochronous OUT transfers.

EZ-USB TRM v1.9 Chapter 8. EZ-USB CPU Page 8-3

Registers Associated with an ISO OUT endpoint
(EP150UT shown as example)

Initialization Data transfer

OUTISOVAL 15‘14‘13‘12‘11‘10‘ 9 M OUT15DATA‘ 7 ‘ 6 ‘ 5 ‘ 4 ‘ 3 ‘ 2 ‘ 1 ‘ 0 ‘
Endpoint Valid (1=valid) Data from USB

OUT]_SADDR‘A9‘A8‘A7‘A6‘A5‘A4‘ 0 ‘ 0 ‘
FIFO Start Address (see text)

USBIRQ| 7 [6 s[4 [a]2]1]0]
SOFIR (1=clear request)

USBIEN| 7 [0 [s 4[] 2[1]o]
SOFIE (1=enabled) OUT15BCH‘ 7 ‘ 6 ‘ 5 ‘ 4 ‘ 3 ‘ 2 ‘ 9 ‘ 8 ‘
Received Byte Count (H)

OUT1SBCL[7 o |s[4[a]z]1]o]
Received Byte Count (L)

ISOERR‘15‘14‘13‘12‘11‘10‘ 9 ‘ 8 ‘
OUT15 CRC Error (1=error)

.

Figure 8-3. Isochronous OUT Registers

8.3.1 Initialization
To initialize an isochronous OUT endpoint, the 8051:

» Sets the endpoint valid bit for the endpoint.

» Sets the endpoint’s FIFO size by loading a starting address (Section 8.4, "Setting
Isochronous FIFO Sizes").

* Enables the SOF interrupt. All isochronous endpoints are serviced in response to
the SOF interrupt.

8.3.2 OUT Data Transfer

When an SOF interrupt occurs, the 8051 is presented with FIFOs containing OUT data
sent from the host in the previous frame, along with 10-bit byte counts, indicating how
many bytes are in the FIFOs. The 8051 has 1 ms to transfer data out of these FIFOs before
the next SOF interrupt arrives.

Page 8-4 Chapter 8. EZ-USB CPU EZ-USB TRM v1.9

To respond to the SOF interrupt, the 8051 clears the USB interrupt (8051 INT2), and
clears the SOFIR bit by writing one to it. Then, the 8051 reads data from the appropriate
OUTNDATA FIFO register(s). The 8051 can check an error bit in the ISOERR register to
determine if a CRC error occurred for the endpoint data. Isochronous data is never
present, so the firmware must decide what to do Wwal-CRCdata.

8.4 Setting Isochronous FIFO Sizes

Up to sixteen EZ-USB isochronous endpoints share an EZ-USB 1,024-byte RAM which
can be configured as one to sixteen FIFOs. The 8051 initializes the endpoint FIFO sizes
by specifying the starting address for each FIFO within the 1,024 bytes, starting at address
zero. The isochronous FIFOs can exist anywhere in the 1,024 bytes, but the user must
take care to ensure that there is sufficient space between start addresses to accommodate
the endpoint FIFO size.

Sixteen start address registers set the isochronous FIFO sizes (Table 8-1). The EZ-USB
core constructs the address writing the 1,024 byte range from the register value as shown
in Figure 8-4.

Address
v v

A9 | AB | A7 | A6 | AS | Ad| O 0 0 0

Register

Figure 8-4. FIFO Start Address Format

EZ-USB TRM v1.9 Chapter 8. EZ-USB CPU Page 8-5

Table 8-1. Isochronous Endpoint FIFO Starting Address Registers

Register Function b7 | b6 | b5 | b4 | b3 | b2
OUT8ADDR | Endpoint 8 OUT Start Address A9 | AB | A7 | A6 | A5 | AMd
OUT9ADDR | Endpoint 9 OUT Start Address A9 | AB | A7 | A6 | A5 | AMd
OUT10ADDR |Endpoint 10 OUT Start Address | A9 | A8 | A7 | A6 | A5 | Ad
OUT11ADDR |Endpoint 11 OUT Start Address | A9 | A8 | A7 | A6 | A5 | Ad
OUT12ADDR | Endpoint 12 OUT Start Address | A9 | A8 | A7 | A6 | A5 | A4
OUT13ADDR |Endpoint 13 OUT Start Address | A9 | A8 | A7 | A6 | A5 | Ad
OUT14ADDR |Endpoint 14 OUT Start Address | A9 | A8 | A7 | A6 | A5 | Ad
OUT15ADDR | Endpoint 15 OUT Start Address | A9 | A8 | A7 | A6 | A5 | Ad
INSADDR Endpoint 8 IN Start Address A9 | A8 | A7 | A6 | A5 | Ad
INSADDR Endpoint 9 IN Start Address A9 | A8 | A7 | A6 | A5 | Ad
INIOADDR Endpoint 10 IN Start Address A9 | A8 | A7 | A6 | A5 | Ad
IN11ADDR Endpoint 11 IN Start Address A9 | A8 | A7 | A6 | A5 | Ad
IN12ADDR Endpoint 12 IN Start Address A9 | A8 | A7 | A6 | A5 | Ad
IN13ADDR Endpoint 13 IN Start Address A9 | A8 | A7 | A6 | A5 | Ad
IN14ADDR Endpoint 14 IN Start Address A9 | A8 | A7 | A6 | A5 | Ad
IN1I5ADDR Endpoint 15 IN Start Address A9 | A8 | A7 | A6 | A5 | Ad

o
ey
o
o

Ol O O]l O| Ol ©O| O] O] Ol O| O] O] ©fl ©of O] ©
Ol Ol O]l O| Ol ©O| O] O] Ol Ol O] O] ©f ©of ©o|] ©

The size of an isochronous endpoint FIFO is determined by subtracting consecutive
addresses in Table 8-1, and multiplying by four. Values written to these registers should
have the two LSBs set to zero. The last endpoint, EP15IN, has a size of 1,024 minus
IN1I5ADDR times four. Because the 10-bit effective address has the four LSBs set to zero
(Figure 8-4), the FIFO sizes are allocated in increments of 16 bytes. For example, if
OUTBADDR=0x00 and OUT9ADDR=0x04, EP8OUT has a FIFO size of the difference
multiplied by four or 16 bytes.

An 8051 assembler or C compiler may be used to translate FIFO sizes into starting
addresses. The assembler example in Figure 8-5 shows a block of equates for the 16 iso-
chronous FIFO sizes, followed by assembler equations to compute the corresponding
FIFO relative address values. To initialize all sixteen FIFO sizes, the 8051 merely copies
the table starting at SOUTAD to the sixteen EZ-USB registers starting at OUTS8ADDR.

Page 8-6 Chapter 8. EZ-USB CPU EZ-USB TRM v1.9

0100 EPSINSZ equ 256 ; 1so FIFO sizes in bytes
0100 EP8OUTSZ equ 256
0010 EP9INSZ equ 16
0010 EP9OUTSZ equ 16
0010 EP10INSZ equ 16
0010 EP100UTSZ equ 16
0000 EP11INSZ equ 0
0000 EP110UTSZ equ 0
0000 EPI12INSZ equ 0
0000 EP120UTSZ equ 0
0000 EP13INSZ equ 0
0000 EP130UTSZ equ 0
0000 EP14INSZ equ 0
0000 EP140UTSZ equ 0
0000 EP15INSZ equ 0
0000 EP150UTSZ equ 0

0000 8OUTAD equ 0 ; Load these 16 bytes into ADDR regs starting OUTS8ADDR
0040 90OUTAD equ 8OUTAD + Low(EP8OUTSZ/4)
0044 100UTAD equ 90UTAD + Low(EP9OUTSZ/4)
0048 110UTAD equ 100UTAD + Low(EP100UTSZ/4)
0048 120UTAD equ 110UTAD + Low(EP110UTSZ/4)
0048 130UTAD equ 120UTAD + Low(EP120UTSZ/4)
0048 140UTAD equ 130UTAD + Low(EP130UTSZ/4)
0048 150UTAD equ 140UTAD + Low(EP140UTSZ/4)
0048 8INAD equ 150UTAD + Low(EP150UTSZ/4)
0088 9INAD equ 8INAD + Low(EP8INSZ/4)
008C 10INAD equ 9INAD + Low(EP9INSZ/4)
0090 11INAD equ 10INAD + Low(EP10INSZ/4)
0090 12INAD equ 11INAD + Low(EP11INSZ/4)
0090 13INAD equ 12INAD + Low(EP12INSZ/4)
0090 14INAD equ 13INAD + Low(EP13INSZ/4)
0090 15INAD equ 14INAD + Low(EP14INSZ/4)

Figure 8-5. Assembler Translates FIFO Sizes to Addresses

The assembler computes starting addresses in Figure 8-5 by adding the previous end-
point’s address to the desired size shifted right twice. This aligns A9 with bit 7 as shown
in Table 8-1. The LOW operator takes the low byte of the resulting 16 bit expression

The user of this code must ensure that the sizes given in the first equate block are all mul-

tiples of 16. This is easy to tell by inspection—the least significant digit of the hex values
in the first column should be zero.

EZ-USB TRM v1.9 Chapter 8. EZ-USB CPU Page 8-7

8.5

Isochronous Transfer Speed

The amount of data USB can transfer during a 1-ms frame is slightly more than 1,000
bytes per frame (1,500 bytes theoretical, without accounting for USB overhead and bus
utilization). A device’s actual isochronous transfer bandwidth is usually determined by
how fast the CPU can move data in and out of its isochronous endpoint FIFOs.

The 8051 code example in Figure 8-6 shows a typical transfer loop for moving external
FIFO data into an IN endpoint FIFO. This code assumes that the 8051 is moving data
from an external FIFO attached to the EZ-USB data bus and strobed by the RD signal, into
an internal isochronous IN FIFO.

mov dptr,#8000H ; pointer to any outside address
inc dps ; switch to second data pointer
mov dptr,#INSDATA ; pointer to an IN endpoint FIFO (IN8 as example)
inc dps ; back to first data pointer
mov r7,#nBytes ; I7 is loop counter—transfer this many bytes
loop: movx a,@dptr ; (2) read byte from external bus to acc
inc dps ; (1) switch to second data pointer
movx @dptr,a ; (2) write to 1SO FIFO
inc dps ; (1) switch back to first data pointer
djnz r7,loop ; (3) loop ‘nBytes’ times

Figure 8-6. 8051 Code to Transfer Data to an Isochronous FIFO (INSDATA)

The numbers in parentheses indicate 8051 cycles. One cycle is four clocks, and the EZ-
USB 8051 is clocked at 24 MHz (42 ns). Thus, an 8051 cycle takes 4*42=168 ns, and the
loop takes 9 cycles or 1. This loop can transfer about 660 bytes into an IN FIFO

every millisecond (1 ms/1.55).

If more speed is required, the loop canwbeolledby in-line coding the first four instruc-
tions in the loop. Then, a byte is transferred in 6 cycles (24 clocks) which equates to 1
per byte. Using this method, the 8051 could transfer 1,000 bytes into an IN FIFO every
millisecond. In practice, a better solution is to in-line code only a portion of the loop code,
which decreases full in-line performance only slightly and uses far fewer bytes of program

code.

Page 8-8

Chapter 8. EZ-USB CPU

EZ-USB TRM v1.9

8.6 Fast Transfers

EZ-USB has a speciéhst transfermode for applications that use external FIFOs con-
nected to the EZ-USB data bus. These applications typically require very high transfer
speeds in and out of EZ-USB endpoint buffers.

EZ-USB
Registers
(Addressed
DPTR as external

RAM)

| I

movx a,@dptr movx @dptr,a

! |

Accumulator

Figure 8-7. 8051 MOVX Instructions

The 8051 transfers data to and from EZ-USB registers and RAM using the MOV X (move
external) instruction (Figure 8-7). The 8051 loads one of its two 16-bit data pointers
(DPTR) with an address in RAM, and then executes a MOVX instruction to transfer data
between the accumulator and the byte addressed by DPTR. The “@” symbol indicates
that the address is supplied indirectly, by the DPTR.

The EZ-USB core monitors MOVX transfers between the accumulatoaapaf the six-

teen isochronous FIFO registerdf an enable bit is set (FISO=1 in the FASTXFR regis-

ter), any read or write to an isochronous FIFO register causes the EZ-USB core to connect
the data to the EZ-USB data bus D[7..0], and generate external read/write strobes. One
MOVX instruction thus transfers a byte of data in or out of an endpoint FIFO and gener-
ates timing strobes for an outside FIFO or memory. The 2-cycle MOVX instruction takes

2 cycles or 333 ns. Figures 8-8 and 8-9 show the data flow for fast writes and reads over
the EZ-USB data bus.

EZ-USB TRM v1.9 Chapter 8. EZ-USB CPU Page 8-9

Fast Bulk Transfers

The EZ-USB core provides a special auto-incrementing data pointer that makes the fast
transfer mechanism available for bulk transfers. The 8051 loads a 16-bit RAM address

into the AUTOPTRHY/L registers, and then accesses RAM data as a FIFO using the
AUTODATA register. Section 6.16, "The Autopointer” describes this special pointer and
register.

8.6.1 Fast Writes

DPTR ISO OUT FIFO

g8

) FWR#

< External FIFO
X SIC

é D[7..0] orA

Accumulator

Figure 8-8. Fast Transfer, EZ-USB to Outside Memory

Fast writes are illustrated in Figure 8-8. When the fast mode is enabled, the DPTR points
to an isochronous OUT FIFO register, and the 8051 executes the “movx a,@dptr” instruc-
tion, the EZ-USB core broadcasts the data from the isochronous FIFO to the outside world
via the data bus D[7..0], and generates a Write Strobe FWR# (Fast Write). A choice of
eight waveforms is available for the write strobe, as shown in the next section.

Page 8-10 Chapter 8. EZ-USB CPU EZ-USB TRM v1.9

8.6.2 FastReads
DPTR ISO IN FIFO
<
s FRD#
® External FIFO
% § D[7..0] or ASIC
IS
>
N
Accumulator

Figure 8-9. Fast Transfer, Outside Memory to EZ-USB

Fast reads are illustrated in Figure 8-9. When the fast mode is enabled, the DPTR points
to an isochronous OUT FIFO register, and the 8051 executes the “movx @dptr,a” instruc-
tion, the EZ-USB core breaks the data path from the accumulator to the IN FIFO register,
and instead writes the IN FIFO using outside data from D[7..0]. The EZ-USB core syn-
chronizes this transfer by generating a FIFO Read Strobe FRD# (Fast Read). A choice of
eight waveform is available for the read strobe, as shown in the next section.

8.7 Fast Transfer Timing

The 8051 sets bits in the FASTXFR register to select the fast ISO and/or fast BULK mode
and to adjust the timing and polarity of the read and write strobes FRD# and FWR#.

FASTXFR Fast Transfer Control 7TFE?2
| b7 b6 b5 b4 b3 b2 b1 bo |
I FISO FBLK RPOL RMOD1 RMODO WPOL WMOD1 | WMODO I

Figure 8-10. The FASTXFR Register Controls FRD# and FWR# Strobes

The 8051 sets FISO=1 to select the fast ISO mode and FBLK=1 to select the fast Bulk
mode. The 8051 selects read and write strobe pulse polarities with the RPOL and WPOL
bits, where O=active low, and 1=active high. Read and write strobe timings are set by

EZ-USB TRM v1.9 Chapter 8. EZ-USB CPU Page 8-11

RMOD1-RMODO for read strobes and WMOD1-WMODO for write strobes, as shown in
Figure 8-11 (write) and Figure 8-12 (read).

Note

When using the fast transfer feature, be sure to enable the FRD# and FWR# strohe sig-
nals in the PORTACFG register.

8.7.1 Fast Write Waveforms

‘4741.‘(?(:n54"
ceas | L L[L] L L] |

D[7..0] —(Output > stretch=000
stretch=000
FWR#[00] \ /
FWR#[01] \ [
FWR#[10] \ /
FWR#[11] \ /

stretch=000

stretch=000

stretch=000

D[7..0] —(Output stretch=001

FWR#[00] \ [stretch=001

:

.

FWR#[01] \ stretch=001

FWR#[10] \ / stretch=001
FWR#[11] \ stretch=001 /

[nn]= WM1:WMO0, WPOL=0
Note: f WPOL=1 the waveforms are inverted

Figure 8-11. Fast Write Timing

Page 8-12 Chapter 8. EZ-USB CPU EZ-USB TRM v1.9

The timing choices for fast write pulses (FWR#) are shown in Figure 8-11. The 8051 can
extend the output data and widths of these pulses by setting cycle stretch values greater
than zero in the 8051 Clock Control Register CKCON (at SFR location OX8E). The top
five waveforms show the fastest write timings, with a stretch value of 000, which per-
forms the write in eight 8051 clocks. The bottom five waveforms show the same wave-
forms with a stretch value of 001.

8.7.2 Fast Read Waveforms

tCL
‘ 41.66 ns

0sc24 o L 7 LI L[]
D[7..0] @

FRD#[00] \ / stretch=000, 001
D[7..0] @}

FRD#[01] \ / stretch=000, 001
D[7..0] G@

FRD#[10] \ / stretch=000
FRD#[10] \ | stretch=001
D[7..0] C@

FRD#[11] \ / stretch=000

FRD#[11] \ stretch=001 |

[nn] = RMOD1:RMODO, RPOL=0
Note: If WPOL=1 the waveforms are inverted

Figure 8-12. Fast Read Timing

The timing choices for fast read pulses (FRD#) are shown in Figure 8-12. Read Strobe
waveforms for stretch values of 000 and 001 are indicated. Although two of the read
strobe widths can be extended using stretch values greater than 000, the times that the
input data is sampled by the EZ-USB core remains the same as shown.

EZ-USB TRM v1.9 Chapter 8. EZ-USB CPU Page 8-13

FRD# strobes[00] and [01], along with the OSC24 clock signal are typically used to con-
nect to an external synchronous FIFO. The on-clock-wide read strobe ensures that the
FIFO address advances only once per clock. The second strobe [01] is for FIFOs that put
data on the bus one clock after the read strobe. Stretch values above 000 serve only to
extend the 8051 cycle times, without affecting the width of the FRD# strobe.

FRD# strobes [10] and [11] are typically connected to an extesyhchronou&IFO,

where no clock is required. Strobe [10] samples the data at the same time as strobe [11],
but provides a wider pulse width (for stretch=000), which is required by some audio
CODECS. Timing values for these strobe signals are given in Chapter 13, “EZ-USB AC/
DC Parameters.”

8.8 Fast Transfer Speed

The 8051 code example in Figure 8-13 shows a transfer loop for moving external FIFO
data into the endpoint 8-IN FIFO. This code moves data from an external FIFO attached
to the EZ-USB data bus and strobed by the FRD# signal, into the FIFO register INSDATA

(init) mov dptr, #FASTXFR ; set up the fast ISO transfer mode
mov a,#10000000b ; FISO=1, RPOL=0, RM1-0 = 00
movx @dptr,a ; load the FASTXFR register
mov dptr,#INSDATA ; pointer to IN endpoint FIFO
mov r7,#80 ; r7 is loop counter, 8 bytes per loop

loop: movx @dptr,a ; (2) write IN FIFO using byte from external bus
movx @dptr,a ; (2) again
movx @dptr,a ; (2) again
movx @dptr,a ; (2) again
movx @dptr,a ; (2) again
movx @dptr,a ; (2) again
movx @dptr,a ; (2) again
movx @dptr,a ; (2) again
djnz r7,loop ; (3) do eight more, ‘r7' times

Figure 8-13. 8051 Code to Transfer 640 Bytes of External Data to an Isochronous IN FIFO

This routine uses a combination of in-line and looped code to transfer 640 bytes into the
EP8IN FIFO from an external FIFO. The loop transfers eight bytes in 19 cycles, and it
takes 80 times through the loop to transfer 640 bytes. Therefore, the total transfer time is
80 times 19 cycles, or 1,520 cycles. The 640 byte transfer thus takes 1,520*166 ns or 252
us, or approximatelpne-fourthof the 1-ms USB frame time.

Using this routine, the time to completely fill one isochronous FIFO with 1,024 bytes
(assuming all 1,024 isochronous FIFO bytes are assigned to one endpoint) would be 128

Page 8-14 Chapter 8. EZ-USB CPU EZ-USB TRM v1.9

times 19 cycles, or 2,432 cycles. The 1,024 byte transfer would takgs4lé3s than
half of the 1-ms USB frame time.

If still faster time is required, the routine can be modified to put more of the MOVX
instructions in-line. For example, with 16 in-line MOVX instructions, the transfer time
for 1,024 bytes would be 35 cycles times 64 loops or 2,240 cycles, ois3’&h 8% speed
improvement over the eight instruction loop.

8.9 Other Isochronous Registers

Two additional registers, ISOCTL and ZBCOUT, provide additional isochronous endpoint
features.

8.9.1 Disable ISO

ISOCTL Isochronous Control 7FAL
| b7 b6 b5 b4 b3 b2 b1 bo |
I - - - - PPSTAT MBZ MBZ ISODISAB I

Figure 8-14. ISOCTL Register

Bit zero of the ISOCTL register is called ISODISAB. When the 8051 sets ISODISAB=1,
all sixteen of EZ-USB endpoints are disabled. If ISODISAB=1, EP8IN=EP15IN and
EP8OUT-EP150UT should not be used. ISODISAB is cleared at power-on.

When ISODISAB=1, the 2,048 bytes of RAM normally used for isochronous buffers is
available to the 8051 as XDATA RANMhpt program memory), from 0x2000 to Ox27FF in
internal memory. When ISODISAB=1, the behavior of the RD# and WR# strobe signals
changes to reflect the additional 2 KB of memory inside the EZ-USB chip. This is shown
in Table 8-2.

Table 8-2. Addresses for RD# and WR# vs. ISODISAB bit

ISODISAB | RD#, WR#

0 2000-7B40,
(default) | 8000-FFFF
1 2800-7B40,

8000-FFFF

EZ-USB TRM v1.9 Chapter 8. EZ-USB CPU Page 8-15

ISOCTL register bits shown as MBZ (must be zero) must be written with zeros. The
PPSTAT bit toggles every SOF, and may be written with any value (no effect). Therefore,
to disable the isochronous endpoints, the 8051 should write the value 0x01 to the ISOCTL
register.

Caution!

If you use this option, be absolutely certain that the host never sends isochronous|data to
your device. Isochronous data directed to a disabled isochronous endpoint system will
cause unpredictable operation.

Note

The Autopointer is not usable from 0x2000-0x27FF (the reclaimed ISO buffer RAM)
when ISODISAB=1.

8.9.2 Zero Byte Count Bits

When the SOF interrupt is asserted, the 8051 normally checks the isochronous OUT end-
point FIFOs for data. Before reading the byte count registers and unloading an isochro-
nous FIFO, the firmware may wish to check for a zero byte count. In this case, the 8051
can check bits in the ZBCOUT register. Any endpoint bit set to “1” indicates that no OUT
bytes were received for that endpoint during the previous frame. Figure 8-15 shows this
register.

ZBCOUT Zero Byte Count Bits TFA2
| b7 b6 b5 b4 b3 b2 b1 bo |
I EP15 EP14 EP13 EP12 EP11 EP10 EP9 EPS I

Figure 8-15. ZBCOUT Register

The EZ-USB core updates these bits every SOF.

Page 8-16 Chapter 8. EZ-USB CPU EZ-USB TRM v1.9

8.10 ISO IN Response with No Data

The ISOSENDOQO bit (bit 7 in the USBPAIR register) is used when the EZ-USB chip
receives an isochronous IN token while the IN FIFO is empty. If ISOSENDO=0 (the
default value) the EZ-USB core does not respond to the IN token. If ISOSENDO=1, the
EZ-USB core sends a zero-length data packet in response to the IN token. Which action to
take depends on the overall system design. The ISOSENDO bit applies to all of the isoch-
ronous IN endpoints, IN-8 through IN-15.

8.11 Using the Isochronous FIFOs

There is a window of time before and after each SOF (Start of Frame) when accessing the
Isochronous FIFOs will cause data corruption or loss of data.

This is because each isochronous endpoint is actually a pair of FIFOs, and the FIFOs are
swapped at SOF time. The swap occurs aboyisliefore the SOF interrupt signals the
8051 code. (Between SOFs, one FIFO of the pair is accessible to the 8051, while the other
FIFO of the pair transfers data to or from the USB.)

Workaround#1: If you can pre-assemble the data into a buffer, blast the data (in a tight
loop) into the new FIFQust afterthe SOF interrupt, typically inside the SOF ISR (Inter-
rupt Service Routine).

Workaround#2: If you can’t pre-assemble the data into a buffer, prevent access during
SOFs by setting a time (in the SOF ISR) to time out and halt access just befarexthe
SOF. Set the timer for about 956 (ms minus 5Q@s).

Be careful of interrupt latency delaying the timeout ISR. That is, the timeout ISR may be
prevented from halting access by getting preempted by a higher priority interrupt(s), made
worse by the necessary practice of disabling interrupts to manage shared resources,
resources that are shared between the ISRs and background process.

To prevent drift of the timer relative to SOFs, restart the timer after each SOF (typically in
the SOF ISR).

EZ-USB TRM v1.9 Chapter 8. EZ-USB CPU Page 8-17

Page 8-18 Chapter 8. EZ-USB CPU EZ-USB TRM v1.9

9 EZ-USB Interrupts

9.1 Introduction

The EZ-USB enhanced 8051 responds to the interrupts shown in Table 9-1. Interrupt
sources that are not present in the standard 8051 are shown as checked in the “New” col-
umn. The three interrupts used by the EZ-USB core are showalthtype.

Table 9-1. EZ-USB Interrupts

New | 8051 Interrupt (IRQ name) Source Vector (hex) | Natural Priority
IEQ INTO# Pin 03 1
TFO Timer 0 Overflow 0B 2
IE1 INT1# Pin 13 3
TF1 Timer 1 Overflow 1B 4
RILO&TLO UARTO Rx & Tx 23 5
P |TF2 Timer 2 Overflow 2B 6
P | Resume (PFI) WAKEUP# Pin or USB Core 33 0
P |RL1&TI 1 UART1 Rx & Tx 3B 7
P |USB (INT2) USB Core 43 8
P |I2C (INT3) USB Core 4B 9
P |IE4 IN4 Pin 53 10
P |IE5 INT5# Pin 5B 1
P |IE6 INT6 Pin 63 12

TheNatural Priority column in Table 9-1 shows the 8051 interrupt priorities. As
explained in Appendix C, the 8051 can assign each interrupt to a high or low priority
group. The 8051 resolves priorities within the groups using the natural priorities.

9.2 USB Core Interrupts

The EZ-USB core provides three interrupt request types, which are described in the fol-
lowing sections:

Wakeup - After the EZ-USB chip detects USB suspend and the 8051 has entered
its idle state, the EZ-USB core responds to an external signal on its
WAKEUP# pin or resumption of USB bus activity by re-starting the EZ-
USB oscillator and resuming 8051 operation.

EZ-USB TRM v1.9 Chapter 9. EZ-USB Interrupts Page 9-1

USB Signaling- These include 16 bulk endpoint interrupts, three interrupts not
specific to a particular endpoint (SOF), Suspend, USB Reset), and two
interrupts for CONTROL transfers (SUTOK, SUDAV). These interrupts
share the USB interrupt (INT2). The AN2122/26 versions have an inter-
rupt indicating that a bulk packet was NAKd.

|2C Transfers - (INT3).

9.3 Wakeup Interrupt

Chapter 10, "EZ-USB Resets" describes suspend-resume signaling in detail, along with a
code example that uses the Wakeup interrupt.

Briefly, the USB host puts a device into SUSPEND by stopping bus activity to the device.
When the EZ-USB core detects 3 ms of no bus activity, it activates the USB suspend inter-
rupt request. If enabled, the 8051 takes the suspend interrupt, does power management
housekeeping (shutting down power to external logic), and finishes by setting SFR bit
PCON.O. This signals the EZ-USB core to enter a very low power mode by turning off the
12-MHz oscillator.

When the 8051 sets PCON.0, it enters an idle state. 8051 execution is resumed by activa-
tion of any enabled interrupt. The EZ-USB chip uses a dedicated interrupt for USB
Resume. When external logic pulls WAKEUP# low (for example, when a keyboard key is
pressed or a modem receives a ring signal) or USB bus activity resumes, the EZ-USB core
re-starts the 12-MHz oscillator, allowing the 8051 to recognize the interrupt and continue
executing instructions.

L

Resume signal "RESUME"
from EZ-USB core S Interrupt
R
EICON.4(0)

Figure 9-1. EZ-USB Wakeup Interrupt

Figure 9-1 shows the 8051 SFR bits associated with the RESUME interrupt. The EZ-USB
core asserts the resume signal when the EZ-USB core senses a USB Global Resume, or
when the EZ-USB WAKEUP# pin is pulled low. The 8051 enables the RESUME inter-
rupt by setting EICON.5.

Page 9-2 Chapter 9. EZ-USB Interrupts EZ-USB TRM v1.9

tb EICON.5 ; enable Resume interrupt

The 8051 reads the RESUME interrupt request bit in EICON.4, and clears the interrupt
request by writing a zero to EICON.4.

Resume_isr: clr EICON.4 ; clear the 8051 W/U
; interrupt request
reti

EZ-USB TRM v1.9 Chapter 9. EZ-USB Interrupts Page 9-3

9.4 USB Signaling Interrupts

Figure 9-2 shows the 21 USB requests that share the 8051 USB (INT2) interrupt. The bot-
tom IRQ, EP7-OUT, is expanded in the diagram to show the logic associated with each
USB interrupt request. Vector 05, not shown in the diagram, exists only in the AN2122/

AN2126, and is described later in this chapter.

Page 9-4

EZ-USB

00
01
02
03
04
05
06
07
08
09
oA
o8
oc
oD
0E
oF
10
1
12
13
14 | EP7-IN

8051

S

R

! OUTO7IEN.7
|15 [EP7-OUT s
INO7IRQ.7(1) R

INO7IRQ.7 (rd)

V4 | IV3 | IV2

V1

VO 0

Figure 9-2. USB Interrupts

Chapter 9. EZ-USB Interrupts

8051 "USB"
Interrupt

EZ-USB TRM v1.9

Referring to the logic inside the dotted lines, each USB interrupt source has an interrupt
request latch. The EZ-USB core sets an IRQ bit, and the 8051 clears an IRQ bit by writing
a“l"toit. The output of each latch is ANDed with an IEN (Interrupt Enable) bit and then
ORd with all the other USB interrupt request sources.

The EZ-USB core prioritizes the USB interrupts, and constructs an Autovector, which
appears in the AVEC register. The interrupt vector values IV[4..0] are shown to the left of
the interrupt sources (shaded boxes). 00 is the highest priority, 15 is the lowest. If two
USB interrupts occur simultaneously, the prioritization affects which one is first indicated
in the AVEC register. If the 8051 has enabled Autovectoring, the AVEC byte replaces
byte 0x45 in 8051 program memory. This causes the USB interrupt automatically to vec-
tor to different addresses for each USB interrupt source. This mechanism is explained in
detail in Section 9.10, "USB Autovectors."

Due to the OR gate in Figure 9-2, any of the USB interrupt sources sets thé S5 1
interrupt request latch, whose state appears as an interrupt request in the 8051 SFR bit
EXIF.4. The 8051 enables the USB interrupt by setting SFR bit EIE.O. To clear the USB
interrupt request the 8051 writes a zero to the EXIF.4 bit. Note that this is the opposite of
clearing any of the individual USB interrupt sources, which the 8051 does by writing a “1”
to the IRQ bit.

When a USB resource requires service (for example, a SOF token arrives or an OUT token
arrives on a BULK endpoint), two things happen. First, the corresponding Interrupt
Request Latch is set. Second, a pulse is generated, ORd with the other USB interrupt
logic, and routed to the 8051 INT2 input. The pulse is required because INT2 is edge trig-
gered.

When the 8051 finishes servicing a USB interrupt, it clears the particular IRQ bit by writ-
inga“l”toit. If any other USB interrupts are pending, the act of clearing the IRQ causes
the EZ-USB core logic to generate another pulse for the highest-priority pending interrupt.
If more that one is pending, they are serviced in the priority order shown in Figure 9-2,
starting with SUDAV (priority 00) as the highest priority, and ending with EP7-OUT (pri-
ority 15) as the lowest.

Important

It is important in any USB Interrupt Service Routine (ISR) to clear the 8051 INT2 inter-
ruptbefore clearing the particular USB interrupt request latch. This is because as soon
as the USB interrupt is cleared, any pending USB interrupt will pulse the 8051 INT?2
input, and if the INT2 interrupt request latch has not been previously cleared the pending
interrupt will be lost.

EZ-USB TRM v1.9 Chapter 9. EZ-USB Interrupts Page 9-5

Figure 9-3 illustrates a typical USB ISR for endpoint 2-IN.

USB_ISR: _push _ dps

push dpl

push dph

push dpll

push dphl

push acc

mov a,EXIF ; FIRST clear the USB (INT2) interrupt request
clr acc.4

mov EXIF,a ; Note: EXIF reg is not 8051 bit-addressable

mov dptr,#INO7IRQ ; now clear the USB interrupt request
mov a,#00000100b ; use IN2 as example
movx @dptr,a

; (perform interrupt routine stuff)

pop acc
pop dph1
pop dpll
pop dph
pop dpl
pop dps

reti

Figure 9-3. The Order of Clearing Interrupt Requests is Important

Page 9-6 Chapter 9. EZ-USB Interrupts EZ-USB TRM v1.9

INO7IRQ Endpoints 0-7 IN Interrupt Requests 7FA9
| b7 b6 b5 b4 b3 b2 b1 bo |
I IN7IR IN6IR IN5IR IN4IR IN3IR IN2IR INLIR INOIR I
OUTO7IRQ Endpoints 0-7 OUT Interrupt Requests TFAA
| b7 b6 b5 b4 b3 b2 b1 bo |
I OUT7IR | OUTBIR | OUTSIR | OUT4IR | OUT3IR | OUT2IR | OUTLIR | OUTOIR I
USBIRQ USB Interrupt Request 7FAB
| b7 b6 b5 b4 b3 b2 b1 bo |
I USESIR | SUSPIR | SUTOKIR | SOFIR | SUDAVIR I
INO7IEN Endpoints 0-7 IN Interrupt Enables 7FAC
| b7 b6 b5 b4 b3 b2 b1 bo |
I IN7IEN IN6IEN INSIEN IN4IEN IN3IEN IN2IEN INLIEN INOIEN I
OUTO7IEN Endpoints 0-7 OUT Interrupt Enables 7FAD
| b7 b6 b5 b4 b3 b2 b1 bo |
I OUT7IEN | OUTBIEN | OUTSIEN | OUT4IEN | OUT3IEN | OUT2IEN | OUTLIEN | OUTOIEN I
USBIEN USB Interrupt Enables 7TFAE
| b7 b6 b5 b4 b3 b2 bl bo |
I URESIE | SUSPIE | SUTOKIE | SOFIE | SUDAVIE I

Figure 9-4. EZ-USB Interrupt Registers

Figure 9-4 shows the registers associated with the USB interrupts. Each interrupt source
has an enable (IEN) and a request (IRQ) bit. The 8051 sets the IEN bit to enable the inter-
rupt. The USB core sets an IRQ bit high to request an interrupt, and the 8051 clears an
IRQ bit by writing a “1” to it.

EZ-USB TRM v1.9 Chapter 9. EZ-USB Interrupts Page 9-7

The USBIEN and USBIRQ registers control the first five interrupts shown in Figure 9-2.
The INO7IEN and OUTO7 registers control the remaining 16 USB interrupts, which corre-
spond to the 16 bulk endpoints INO-IN7 and OUTO-OUT?7.

The 21 USB interrupts are now described in detail.

9.5 SUTOK, SUDAV Interrupts

<+«—SETUP Stage —»

S D C
B g E g A|| 8bytes || R A
T oll ol ¢ T|| Setup || C ©
U rllpls A Data 1 K
P 0 6
Token Packet Data Packet H/S Pkt,
SUTOK SUDAV
Interrupt Interrupt

Figure 9-5. SUTOK and SUDAV Interrupts

SUTOK and SUDAV are supplied to the 8051 by EZ-USB CONTROL endpoint zero.

The first portion of a USB CONTROL transfer is the SETUP stage shown in Figure 9-5.
(A full CONTROL transfer is the SETUP stage shown in Figure 7-1.) When the EZ-USB
core decodes a SETUP packet, it asserts the SUTOK (SETUP Token) interrupt request.
After the EZ-USB core has received the eight bytes error-free and copied them into eight
internal registers at SETUPDAT, it asserts the SUDAV interrupt request.

The 8051 program responds to the SUDAV interrupt by reading the eight SETUP data
bytes in order to decode the USB request (Chapter 7, "EZ-USB Endpoint Zero").

The SUTOK interrupt is provided to give advance warning that the eight register bytes at
SETUPDAT are about to be over-written. It is useful for debug and diagnostic purposes.

Page 9-8 Chapter 9. EZ-USB Interrupts EZ-USB TRM v1.9

9.6 SOF Interrupt

S
O
E

Token Pkt

Figure 9-6. A Start Of Frame (SOF) Packet

USB Start of Frame interrupt requests occur every millisecond. When the EZ-USB core
receives an SOF packet, it copies the eleven-bit frame number (FRNO in Figure 9-6) into
the USBFRAMEH and USBFRAMEL registers, and activates the SOF interrupt request.
The 8051 services all isochronous endpoint data as a result of the SOF interrupt.

9.7 Suspend Interrupt

If the EZ-USB detects 3 ms of no bus activity, it activates the SUSP (Suspend) interrupt
request. A full description of Suspend-Resume signaling appears in Chapter 11, "EZ-USB
Power Management."

9.8 USB RESET Interrupt

The USB signals a bus reset by driving both D+ and D- low for at least 10 ms. When the
EZ-USB core detects the onset of USB bus reset, it activates the URES interrupt request.

9.9 Bulk Endpoint Interrupts

The remaining 16 USB interrupt requests are indexed to the 16 EZ-USB bulk endpoints.
The EZ-USB core activates a bulk interrupt request when the endpoint buffer requires ser-
vice. For an OUT endpoint, the interrupt request signifies that OUT data has been sent
from the host, validated by the EZ-USB core, and is sitting in the endpoint buffer memory.
For an IN endpoint, the interrupt request signifies that the data previously loaded by the
8051 into the IN endpoint buffer has been read and validated by the host, making the IN
endpoint buffer ready to accept new data.

EZ-USB TRM v1.9 Chapter 9. EZ-USB Interrupts Page 9-9

The EZ-USB core sets an endpoint’s interrupt request bit when the endpoint’s busy bit (in
the endpoint CS register) goes low, indicating that the endpoint buffer is available to the
8051. For example, when endpoint 4-OUT receives a data packet, the busy bit in the
OUTACS register goes low, and OUT07IRQ.4 goes high, requesting the endpoint 4-OUT
interrupt.

9.10 USB Autovectors

The USB interrupt is shared by 21 interrupt sources. To save the code and processing time
required to sort out which USB interrupt occurred, the EZ-USB core provides a second
level of interrupt vectoring, called “Autovectoring.” When the 8051 takes a USB inter-

rupt, it pushes the program counter onto its stack, and then executes a jump to address 43,
where it expects to find a jump instruction to an interrupt service routine. The 8051 jump
instruction is encoded as follows:

Table 9-2. 8051 JUMP Instruction

Address | Op-Code | Hex Value

0043 Jump 0x02
0044 AddrH OxHH
0045 AddrL OxLL

If Autovectoring is enabled (AVEN=1 in the USBBAV register), the EZ-USB core substi-
tutes its AVEC byte for the byte at address 0x0045. Therefore, if the programmer pre-
loads the high byte (“page”) of a jump table address at location 0x0044, the core-inserted
byte at 0x45 will automatically direct the JUMP to one of 21 addresses within the page. In

the jump table, the programmer then puts a series of jump instructions to each particular
ISR.

Page 9-10 Chapter 9. EZ-USB Interrupts EZ-USB TRM v1.9

Table 9-3. A Typical USB Jump Table

Table
Offset

00 |JMP SUDAV_ISR
04 |JMP SOF_ISR

08 |JMP SUTOK_ISR

0C | JMP SUSPEND ISR
10 [JMP USBRESET ISR

14 | IMP IBN_ISR (2122/2126
only, otherwise NOP)

18 | JMP EPOIN _ISR
1C | JMP EPOOUT_ISR
20 | JMPIN1BUF_ISR
24 | JMP EP1OUT_ISR
28 | JMP EP2IN_ISR
2C | JMP EP20UT_ISR
30 | JMP EP3IN_ISR
34 | JMP EP3OUT_ISR
38 | JMP EP4IN_ISR
3C |JMP EP4OUT_ISR
40 | JMP EPSIN_ISR
44 | JMP EP50UT_ISR
48 | JMP EP6IN_ISR
4C | JMP EP60OUT_ISR
50 | JMP EP7IN_ISR
54 | JMP EP70UT_ISR

Instruction

9.11 Autovector Coding

A detailed example of a program that uses Autovectoring is presented in Section 6.14,
"Interrupt Bulk Transfer Example." The coding steps are summarized here. To employ
EZ-USB Autovectoring:

1. Insertajump instruction at 0x43 to a table of jump instructions to the various USB
interrupt service routines.

EZ-USB TRM v1.9 Chapter 9. EZ-USB Interrupts Page 9-11

2. Code the jump table with jump instructions to each individual USB interrupt ser-
vice routine. This table has two important requirements, arising from the format of
the AVEC byte (zero-based, with 2 LSBs set to 0):

* It must begin on a page boundary (address OXNNOO).

* The jump instructions must be four bytes apart.

* The interrupt service routines can be placed anywhere in memory.

* Write initialization code to enable the USB interrupt (INT2), and Autovector-

ing.
8051 USB
Interrupt
Vector USB_Jmp_Table:
0043 LIMP 0400
0044 04
0045 (00)26}‘ \
US? core 042C LIMP EP20UT_ISR
AVEC /| 042D o1
042E 19 EP20UT _ISR:
\> 0119

Figure 9-7. The Autovector Mechanism in Action

Figure 9-7 illustrates an ISR that services endpoint 2-OUT. When endpoint 2-OUT
requires service, the EZ-USB core activates the USB interrupt request, vectoring the 8051
to location 0x43. The jump instruction at this location, which was originally coded as
“LIMP 04-00° becomes “LIMP 04£2C” due to the EZ-USB core substitutir®C as the
Autovector byte for Endpoint 2-OUT (Table 9-3). The 8051 jumps to 042C, where it exe-
cutes the jump instruction to the endpoint 2-OUT ISR shown in this example at address
0119. Once the 8051 takes the vector at 0043, initiation of the endpoint-specific ISR takes
only eight 8051 cycles.

Page 9-12 Chapter 9. EZ-USB Interrupts EZ-USB TRM v1.9

9.12 IPC Interrupt

ez-uss | 8051

T
I 8051 I12C
| D—V Interrupt
[ooe |5 s ey
RD or WR) |
I2DAT register R | R [EXIF.5(rd)]
12C Interrupt
Request | EXIF.5(0)
|I2CS | START STOP LASTRD ID1 DO BERR ACK DONE
12DAT D7 D6 D5 D4 D3 D2 D1 DO

Figure 9-8. PC Interrupt Enable Bits and Registers

Chapter 4, "EZ-USB Input/Output” describes the 8051 interface to the EZ-8S8oin-
troller. The 8051 uses two registers, 12C&(IControl and Status) and I2DAT?Q Data)

to transfer data over théQ bus. The EZ-USB core signals completion of a byte transfer
by setting the DONE bit (1I2CS.0) high, which also sets #hihterrupt request latch
(Figure 9-8). This interrupt request is routed to the 8051 INT3 interrupt.

The 8051 enables théQ interrupt by setting EIE.1=1. The 8051 determines the state of
the interrupt request flag by reading EXIF.5, and resets the INT3 interrupt request by writ-
ing a zero to EXIF.5. Any 8051 read or write to the I2DAT or I12CS register automatically
clears thedC interrupt request.

9.13 In Bulk NAK Interrupt - (AN2122/AN2126 only)

The EZ-USB family responds to an IN token from the host by loading an IN endpoint
buffer and therarmingthe endpoint by loading a byte count for the endpoint. After the
host successfully receives the IN data, the 8051 receives an EP-IN interrupt, signifying
that the IN endpoint buffer is once again ready to accept data.

EZ-USB TRM v1.9 Chapter 9. EZ-USB Interrupts Page 9-13

In some situations, the host may send IN tokens before the 8051 has loaded and armed an
IN endpoint. To alert the 8051 that an IN endpoint is bgingged the AN2122/26 add a

set of interrupts, one per IN endpoint, that indicate that an IN endpoint just sent a NAK to
the host. This happens when the host sends an IN token and the IN endpoint does not have
data (yet) for the host.

The new interrupt is called “IBN,” for IN Bulk NAK. Its INT2 Autovector is 05, which
was previously reserved in the EZ-USB family.

The IBN interrupt requests and enables are controlled by two new registers. Note that
because the IBN interrupt exists only in the AN2122/AN2126, which has 6 bulk IN end-
points, there are IRQ and IEN bits endpoints INO through IN6.

IBNIRQ IN Bulk NAK Interrupt Requests 7FBO
b7 b6 b5 b4 b3 b2 bl b0
EP6IN EP5IN EP4IN EP3IN EP2IN EP1IN EPOIN
RIW RIW RIW RIW RIW RIW RIW RIW
X X X X X X X X
Figure 9-9. IN Bulk NAK Interrupt Request Register
IBNEN IN Bulk NAK Interrupt Enables 7FB1
b7 b6 b5 b4 b3 b2 bl b0
EP6IN EP5IN EP4IN EP3IN EP2IN EP1IN EPOIN
RIW RIW RIW RIW RIW RIW RIW RIW
X 0 0 0 0 0 0 0

Figure 9-10. IN Bulk NAK Interrupt Enable Register

Each of the individual IN endpoints may be enabled for an IBN interrupt using the IBNEN
register. The 8051 sets an interrupt enable bit to “1” to enable the corresponding interrupt.
The ISR tests the IBNIRQ bits to determine which endpoint or endpoints generated the
interrupt request. As with all other EZ-USB interrupt requests, the 8051 clears an
IBNIRQ bit by writing a “1” to it.

Page 9-14 Chapter 9. EZ-USB Interrupts EZ-USB TRM v1.9

9.14 PC STOP Complete Interrupt - (AN2122/AN2126 only)

I2CMODE

12C Mode

TFAT7

b7

b6

b5

b4

b3

b2

bl

b0

STOPIE

RIW

0

0

0

Figure 9-11. PC Mode Register

The PC interrupt includes one additional interrupt source in the AN2122/AN2126, a 1-0
transition of the STOP bit. To enable this interrupt, set the STOPIE bit in the 2CMODE
register. The 8051 determines the interrupt source by checking the DONE and STOP bits

in the 12CS register.

12CS I2C Control and Status TFAS
b7 b6 b5 b4 b3 b2 bl b0
START STOP LASTRD ID1 IDO BERR ACK DONE
RIW RIW RIW R R R R R
0 0 0 X X 0 0 0
Figure 9-12. FC Control and Status Register
I2DAT |2C Data 7FA6
b7 b6 b5 b4 b3 b2 bl b0
D7 D6 DS D4 D3 D2 D1 DO
RIW RIW RIW RIW RIW RIW RIW RIW
X X X X X X X X
Figure 9-13. fC Data
Page 9-15

EZ-USB TRM v1.9

Chapter 9. EZ-USB Interrupts

The two registers that the 8051 uses to contiGltransfers are shown above. In the EZ-
USB family, an FC interrupt request occurs on INT3 whenever the DONE bit (12CS.0)

makes a 0-to-1 transition. This interrupt signals the 8051 that@edntroller is ready
for another command.

The 8051 concludesC transfers by setting the STOP bit (12CS.6). When the STOP con-
dition has been sent over th€lbus, the iC controller resets 12CS.6 to zer®uring the

time the ¥C controller is generating the stop condition, it ignores accesses to the 12CS and
I2DAT registers.The 8051 code should therefore check the STOP bit for zero before writ-

ing new data to I2CS or I12DAT. In the EZ-USB family, it does this by polling the 12CS.6
bit.

Page 9-16 Chapter 9. EZ-USB Interrupts EZ-USB TRM v1.9

10 EZ-USB Resets

10.1 Introduction

The EZ-USB chip has three resets:

» A Power-On Reset (POR), which turns on the EZ-USB chip in a known state.
* An 8051 reset, controlled by the EZ-USB core.
* A USB bus reset, sent by the host to reset a device.

This chapter describes the effects of these three resets.

10.2 EZ-USB Power-On Reset (POR)

RES
8051
Vcce
l CPUCS.0
(1 at PWR ON) <
_RESET | RES
EZ-USB Core 24 MHz
i USB Bus !
1 _Reset 1
XN 48 MHz
2 L ‘ |
MHz — Oscillator —» PLL e =2
A
T XOUT | CLK24

Figure 10-1. EZ-USB Resets

When power is first applied to the EZ-USB chip, the external R-C circuit holds the EZ-
USB core in reset until the on-chip PLL stabilizes. The CLK24 pin is active as soon as
power is applied. The 8051 may clear an EZ-USB control bit, CLK240E, to inhibit the
CLK24 output pin for EMI-sensitive applications that do not need this signal. External
logic can force a chip reset by pulling the RESET pin HI. The RESET pin is normally

EZ-USB TRM v1.9 Chapter 10. EZ-USB Resets Page 10-1

connected to Vcc through ayF capacitor and to GND through a 10-K resistor
(Figure 10-1). The oscillator and PLL are unaffected by the state of the RESET pin.

The CLK24 signal is active while RESET = HI. When RESET returns LO, the activity on
the CLK24 pin depends on whether or not the EZ-USB chip is in suspend state. If in sus-
pend, CLK24 stops. Resumption of USB bus activity or asserting the WAKEUP# pin LO

re-starts the CLK24 signal.

Power-on default values for all EZ-USB register bits are shown in Chapter 12, "EZ-USB
Registers." Table 10-1 summarizes reset states that affect USB device operation. Note

that the term “Power-On Reset” refers to a reset initiated by application of poniay,

assertion of the RESET pin.

Table 10-1. EZ-USB States After Power-On Reset (POR)

[tem Register Default Value Comment

1 | Endpoint Data XXXXXXXX

2 | Byte Counts XXXXXXXX

3 | CPUCS rrrr0011 rrrr=rev number, b1 =CLK240E, b0=8051RES

4 | PORT Configs 00000000 |0, not alternate functions

5 | PORT Registers XXXXXXXX

6 | PORT OEs 00000000 Inputs

7 | Interrupt Enables | 00000000 Disabled

8 | Interrupt Regs 00000000 Cleared

9 |BukkINC/S 00000000 Bulk IN endpoints not busy (unarmed)

10 | Bulk OUT C/s* 00000000 Bulk OUT endpoints not busy (unarmed)

11 | Toggle Bits 00000000 Data toggles = 0

12 |USBCS 00000100 RENUM=0, DISCOE=1 (Discon pin drives)

13 | FNADDR 00000000 USB Function Address

14 | INO7VAL 01010111 EPO0,1,2,4,6 IN valid

15 | OUTO7VAL 01010101 EPO0,2,4,6 OUT valid

16 | INISOVAL 00000111 EP8,9,10 IN valid

17 | OUTISOVAL 00000111 EP8,9100UT valid

18 | USBPAIR 0x000000 ISOsend0 (b7) = 0, no pairing

19 | USBBAV 00000000 Break condition cleared, no Autovector

20 | Configuration 0 Internal EZ-USB core value

21 | Alternate Setting 0 Internal EZ-USB core value

* When the 8051 is released from reset, the EZ-USB automatically arms the Bulk OUT

endpoints by setting their CS registers to 000000010b.

Page 10-2

Chapter 10. EZ-USB Resets EZ-USB TRM v1.9

From Table 10-1, at power-on:

Endpoint data buffers and byte counts are un-initialized (1,2).

The 8051 is held in reset, and the CLK24 pin is enabled (3).

All port pins are configured as input ports (4-6).

USB interrupts are disabled, and USB interrupt requests are cleared (7-8).

Bulk IN and OUT endpoints are unarmed, and their stall bits are cleared (9). The
EZ-USB core will NAK IN or OUT tokens while the 8051 is reset. OUT end-
points are enabled when the 8051 is released from reset.

Endpoint toggle bits are cleared (11).

The ReNum bit is cleared. This means that the EZ-USB core, and not the 8051,
initially responds to USB device requests (12).

The USB function address register is set to zero (13).

The endpoint valid bits are set to match the endpoints used by the default USB
device (14-17).

Endpoint pairing is disabled. Also, ISOSend0=0, meaning that if an Isochronous
endpoint receives an IN token without being loaded by the 8051 in the previous
frame, the EZ-USB core does not generate any response (18).

The breakpoint condition is cleared, and autovectoring is turned off (19).

Configuration Zero, Alternate Setting Zero is in effect (20-21).

10.3 Releasing the 8051 Reset

The EZ-USB register bit CPUCS.0 resets the 8051. This bit is HI at power-on, initially
holding the 8051 in reset. There are three ways to release the 8051 from reset:

By the host, as the final step of a RAM download.
Automatically, as part of an EEPROM load.

Automatically, when external ROM is used (EA=1).

EZ-USB TRM v1.9 Chapter 10. EZ-USB Resets Page 10-3

10.3.1 RAM Download

Once enumerated, the host can download code into the EZ-USB RAM using the “Firm-
ware Load” vendor request (Chapter 7, "EZ-USB Endpoint Zero"). The last packet loaded
writes 0 to the CPUCS register, which clears the 8051 RESET bit.

Note

The other bit in the CPUCS register, CLK240E, is writable only by the 8051, so the host
writing a zero byte to this register does not turn off the CLK24 signal.

10.3.2 EEPROM Load

Chapter 5 describes the EEPROM boot loads in detail. Briefly, at power-on, the EZ-USB

core checks for the presence of an EEPROM or?@shius. If found, it reads the first
EEPROM byte. Ifit reads 0xB2 as the first byte, the EZ-USB core downloads 8051 code
from the EEPROM into internal RAM. The last byte of a “B2” load writes 0x00 to the
CPUCS register (at 0x7F92), which releases the 8051 from reset.

10.3.3 External ROM

EZ-USB systems can use external program memory containing 8051 code and USB
device descriptors, which include the VID/DID/PID bytes. Because these systems do no
require andiC EEPROM to supply the VID/DID/PID, the EZ-USB core automatically
releases 8051 reset when:

1. EA=1 (External code memoryand

2. No “B0/B2” EEPROM is detected on thé&d bus.

The EZ-USB core also sets the ReNum bit to “1,” giving USB control to the 8051.

10.4 8051 Reset Effects

Once the 8051 is running, the USB host may reset the 8051 by downloading the value
0x01 to the CPUCS register. The host might do this in preparation for loading code over-
lays, effectively magnifying the size of the internal EZ-USB RAM. For such applications
itis important to know the state of the EZ-USB chip during and after an 8051 reset. In this

Page 10-4 Chapter 10. EZ-USB Resets EZ-USB TRM v1.9

section, this particular reset is called an “8051 Reset,” and should not be confused with the
POR described in Section 10.2, "EZ-USB Power-On Reset (POR)." This discussion
applies only to the condition where the EZ-USB chip is powered, and the 8051 is reset by
the host setting the CPUCS register to 0.

The basic USB device configuration remains intact through an 8051 reset. Valid end-
points remain valid, the USB function address remains the same, and the 10 ports retain
their configurations and values. Stalled endpoints remain stalled, and data toggles don’t
change. The only effects of an 8051 reset are as follows:

* USB interrupts are disabled, but pending interrupt requests remain pending.

* During the 8051 Reset, all bulk endpoints are unarmed, causing the EZ-USB core
to NAK and IN or OUT tokens.

» After the 8051 Reset is removed, the OUT bulk endpoints are automatically
armed. OUT endpoints are thus ready to acoe@OUT packet before 8051
intervention is required.

» The breakpoint condition is cleared.

The ReNum bit is not affected by an 8051 reset.

When the 8051 comes out of reset, the pending interrupts are kept pending, but disabled
(2). This gives the firmware writer the choice of acting on pre-8051-reset USB events, or
ignoring them by clearing the pending interrupt(s).

During the 8051 reset time, the EZ-USB core holds off any USB traffic by NAKing IN
and OUT tokens (2). The EZ-USB core automatically arms the OUT endpoints when the
8051 exits the reset state (3).

USBBAV.3, the breakpoint BREAK bit, is cleared (4). The other bits in the USBBAV reg-
ister are unaffected.

10.5 USB Bus Reset

The host signals a USB Bus Reset by driving an SEO state (both D+ and D- data lines low)
for a minimum of 10 ms. The EZ-USB core senses this condition, requests the 8051 USB
Interrupt (INT2), and supplies the interrupt vector for a USB Reset. A USB reset affects
the EZ-USB resources as shown in Table 10-2.

EZ-USB TRM v1.9 Chapter 10. EZ-USB Resets Page 10-5

Table 10-2. EZ-USB States After a USB Bus Reset

Item Register Eif;ﬁju;t Comment
1 |Endpt Data uuuuuuuu | u = unchanged
2 Byte Counts uuuuuuuu
3 | CPUCS uuuuuuuu
4 | PORT Configs uuuuuuuu
5 | PORT Registers uuuuuuuu
6 | PORT OEs uuuuuuuu
7 | Interrupt Enables uuuuuuuu
8 Interrupt Regs uuuuuuuu
9 |BulkINC/S 00000000 | unarm
10 | Bulk OUT C/S uuuuuuuu | retain armed/unarmed state
11 | Toggle Bits 00000000
12 | USBCS uuuuuuuu | ReNum bit unchanged
13 | FNADDR 00000000 | USB Function Address
14 | INO7VAL uuuuuuuu
15 | OUTO7VAL uuuuuuuu
16 | INISOVAL uuuuuuuu
17 | OUTISOVAL uuuuuuuu
18 | USBPAIR uuuuuuuu
19 | Configuration 0
20 | Alternate Setting 0

A USB bus reset leaves most EZ-USB resources unchanged. From Table 10-2, after USB
bus reset:

» The EZ-USB coreinarmsall Bulk IN endpoints (9). Data loaded by the 8051 into
an IN endpoint buffer remains there, and the 8051 firmware can either re-send it by
loading the endpoint byte count register to re-arm the transfer, or send new data by
re-loading the IN buffer before re-arming the endpoint.

* Bulk OUT endpoints retain thebusystates (10). Data sent by the hostto an OUT
endpoint buffer remains in the buffer, and the 8051 firmware can either read the
data or reject it astalesimply by not reading it. In either case, the 8051 loads a
dummy value to the endpoint byte count register to re-arm OUT transfers.

» Toggle bits are cleared (11).

* The device address is reset to zero (13).

Page 10-6 Chapter 10. EZ-USB Resets EZ-USB TRM v1.9

Note from item 12 that the ReNum bit is unchanged after a USB bus reset. Therefore, if a
device has ReNumeratgdand loaded a new personality, it retains the new personality
through a USB bus reset.

10.6 EZ-USB Disconnect

Table 10-3. Effects of an EZ-USB Disconnect and Re-connect

Item Register D\gﬁju;t Comment
1 |Endpt Data uuuuuuuu | u = unchanged
2 Byte Counts uuuuuuuu
3 | CPUCS uuuuuuuu
4 | PORT Configs uuuuuuuu
5 | PORT Registers uuuuuuuu
6 PORT OEs uuuuuuuu
7 | Interrupt Enables uuuuuuuu
8 Interrupt Regs uuuuuuuu
9 |BulkINC/S 00000000 | unarm, clear stall bit
10 | Bulk OUT C/S 00000000 | Arm, clear stall bit
11 | Toggle Bits 00000000 | reset
12 | USBCS uuuuuuuu | ReNum bit unchanged
13 | FNADDR 00000000 | USB Function Address
14 | INO7VAL uuuuuuuu
15 | OUTO7VAL uuuuuuuu
16 | INISOVAL uuuuuuuu
17 | OUTISOVAL uuuuuuuu
18 | USBPAIR uuuuuuuu
19 | Configuration 0
20 | Alternate Setting 0

Although not strictly a “reset,” when the EZ-USB simulates a disconnect-reconnect in
order to ReNumerate, there are effects on the EZ-USB core:

* Bulk IN endpoints are unarmed, and bulk OUT endpoints are armed (9-10).
* Endpoint STALL bits are cleared (9-10).

» Datatoggles are reset (11).

EZ-USB TRM v1.9 Chapter 10. EZ-USB Resets Page 10-7

The function address is reset to zero (13).
The configuration is reset to zero (19).

Alternate settings are reset to zero (20).

10.7 Reset Summary

Table 10-4. Effects of Various EZ-USB Resets (“U” Means “Unaffected”)

Resource RESET pin | USB Bus Reset | Disconnect | 8051 Reset
8051 Reset reset U v N/A
EPO-7 IN EPs unarm unarm unarm unarm
EPO-7 OUT EPs unarm u arm unarm/arm
Breakpoint reset U U reset
Stall Bits reset U reset U
Interrupt Enables reset U U reset
Interrupt Reqgs reset u U U
CLK24 run U u U
Data Toggles reset reset reset u
Function Address reset reset reset U
Configuration 0 0 0 U
ReNum 0 u V] V]

Table 10-4 summarizes the effects of the four EZ-USB resets.

Note

The PC controller is not reset for any of the conditions laid out in Table 10-4. Only

EZ-USB RESET pin resets it.

Page 10-8

Chapter 10. EZ-USB Resets

EZ-USB TRM v1.9

the

11 EZ-USB Power Management

11.1 Introduction

The USB host can suspend a device to put it into a power-down mode. When the USB
signals a SUSPEND operation, the EZ-USB chip goes through a sequence of steps to
allow the 8051 to first turn off external power-consuming subsystems, and then enter an
ultra-low-power mode by turning off its oscillator. Once suspended, the EZ-USB chip is
awakened either by resumption of USB bus activity, or by assertion of its WAKEUP# pin.
This chapter describes the suspend-resume mechanism.

12 MHz

il

WAKEUP pin :[>_4
> START—Pp .
USB Resume STOP Oscillator

PLL

Restart 48 QAHZ
Delay
div by
2
[CLK24

L—PCON.0—]
Signal
—————— Resume INT----»| 8051 |—» Resume

(USBCsS.0)
. uUsB
No USB activity "SUSPEND"
for 3 msec.
Interrupt

Figure 11-1. Suspend-Resume Control

Figure 11-1 illustrates the EZ-USB logic that implements USB suspend and resume.
These operations are explained in the next sections.

EZ-USB TRM v1.9 Chapter 11. EZ-USB Power Management Page 11-1

11.2 Suspend

12 MHz

il

——STOP—»| Oscillator

PLL

48 MHz

div by

¢ ciKa

PCON.O
8051

INT2

- USB |
No USB activity "SUSPEND"
for 3 msec.
Interrupt

Figure 11-2. EZ-USB Suspend Sequence

A USB device recognizes SUSPEND as 3 ms of a bus idle (*J”) state. The EZ-USB core
alerts the 8051 by asserting the USB (INT2) interrupt and the SUSPEND interrupt vector.
This gives the 8051 code a chance to perform power SUSPEND interrupt vector. This

gives the 8051 code a chance to perform power conservation housekeeping before shut-
ting down the oscillator.

Page 11-2 Chapter 11. EZ-USB Power Management EZ-USB TRM v1.9

The 8051 code responds to the SUSPEND interrupt by taking the following steps:

1. Performs any necessary housekeeping such as shutting off external power-con-
suming devices.

2. Sets bit 0 of the PCON SFR (Special Function Register). This has two effects:
* The 8051 enters itslle mode, which is exited by any interrupt.

* The 8051 sends an internal signal to the EZ-USB core which causes it to turn
off the oscillator and PLL.

These actions put the EZ-USB chip into a low-power mode, as required by the USB Spec-
ification.

11.3 Resume

12 MHz

il

WAKEUP# pin N
USB Resume START Oscillator
PLL
\
Restart 48 QAHZ
Delay
div by
2
[CLK24
Signal
L——Resume INT—pp{ 8051 ——» Resume
(USBCS.0)

Figure 11-3. EZ-USB Resume Sequence

EZ-USB TRM v1.9 Chapter 11. EZ-USB Power Management Page 11-3

The EZ-USB oscillator re-starts when:
* USB bus activity resumes (shown as “USB Resume” in Figure 11-3), or
» External logic asserts the EZ-USB WAKEUP# pin low.

After an oscillator stabilization time, the EZ-USB core asserts the 8051 Resume interrupt
(Figure 9-1). This causes the 8051 to exitidie mode. The Resume interrupt is the high-
est priority 8051 interruptlt is always enabled, unaffected by the EA bit.

The resume ISR clears the interrupt request flag, and executes an “reti” (return from inter-
rupt) instruction. This causes the 8051 to continue program execution at the instruction
following the one that set PCON.0 to initiate the suspend operation.

About the ‘Resume’ Interrupt

The 8051 enters the idle mode when PCON.OQ is set to “1.” Although the 8051 exits its
idle state whemnyinterrupt occurs, the EZ-USB logic supports only the RESUME inter-
rupt for the USB resume operation. This is because the EZ-USB core asserts thig partic-
ular interrupt after restarting the 8051 clock.

11.4 Remote Wakeup

USBCS USB Control and Status 7FD6
| b7 b6 b5 b4 b3 b2 b1 bo |
IWAKESRC - - - SIGRSUMEI

Figure 11-4. USB Control and Status Register

Two bits in the USBCS register are used for remote wakeup, WAKESRC and SIGR-
SUME.

After exiting the idle state, the 8051 reads the WAKESRC bit in the USBCS register to
discover how the wakeup was initiated. WAKESRC=1 indicates assertion of the
WAKEUP# pin, and WAKESRC=0 indicates a resumption of USB bus activity. The 8051
clears the WAKESRC bit by writing a “1” to it.

Page 11-4 Chapter 11. EZ-USB Power Management EZ-USB TRM v1.9

Note

If your design does not use remote wakeup, tie the WAKEUP# pin high. Holding the
WAKEUP# pin low inhibits the EZ-USB chip from suspending.

When a USB device is suspended, the hub driver is tri-stated, and the bus pullup and pull-
down resistors cause the bus to assume the “J,” or idle state. A suspended device signals a

remote wakeup by asserting the “K” state for 10-15 ms. The 8051 controls this using the
SIGRSUME bit in the USBCS register.

If the 8051 finds WAKESRC=1 after exiting the idle mode, it drives the “K” state for 10-
15 ms to signal the USB remote wakeup. It does this by setting SIGRSUME=1, waiting
10-15 ms, and then setting SIGRSUME=0. When SIGRSUME=0, the EZ-USB bus buffer

reverts to normal operation. The resume routine should also write a “1” to the WAKESRC
bit to clear it.

J and K States

The USB Specification uses differential data signals D+ and D-. Instead of defining a

logical “1” and “0,” it defines the “J” and “K” states. For a high speed device, the “J”
state means (D+ > D-).

The USB Default device does not support remote wakeup. This fact is reported at enu-
meration time in byte 7 of the built-in Configuration Descriptor (Table 5-10).

Remote Wakeup: The Big Picture

Additional factors besides the EZ-USB suspend-resume mechanism described in fthis
section determine whether remote wakeup is possible. These are:

1. The device must report that it is capable of signaling a remote wakeup in the 'bAt-

tributes” field of its Configuration Descriptor. See Table 5-10 for an example of this
descriptor.

2. The host mustissue a “Set_Feature/Device” request with the feature selector field
set to 0x01 to enable remote wakeup. See Table 7-6 for the detailed request

EZ-USB TRM v1.9 Chapter 11. EZ-USB Power Management Page 11-5

Page 11-6 Chapter 11. EZ-USB Power Management EZ-USB TRM v1.9

12 EZ-USB Registers

12.1 Introduction

This section describes the EZ-USB registers in the order they appear in the EZ-USB mem-
ory map. The registers are named according to the following conventions.

Most registers deal with endpoint3he general register format is DDDnFFF, where:
DDD is endpoint direction, IN or OUT with respect to the USB host.
n is the endpoint number, where:
* “07” refers to endpoints 0-7 as a group.
* 0-7 refers to each individual BULK/INTERRUPT/CONTROL endpoint.
* “ISO” indicates isochronous endpoints as a group.
FFF s the function, where:
* CSis acontrol and status register
* [IRQis an Interrupt Request bit
* |Eis an Interrupt Enable bit

* BC, BCL, and BCH are byte count registers. BC is used for single byte counts,
and BCL/H are used as the low and high bytes of 16-bit byte counts.

» DATA is a single-register access to a FIFO.

 BUF is the start address of a buffer.

Examples:

* IN7BC is the Endpoint 7 IN byte count.
* OUTO7IRQ is the register containing interrupt request bits for OUT endpoints 0-7.

* INISOVAL contains valid bits for the isochronous IN endpoints (EP8IN-EP15IN).

EZ-USB TRM v1.9 Chapter 12. EZ-USB Registers Page 12-1

USB
ADDR
VAL
FRAME
PTR

Other Conventions

Indicates a global (not endpoint-specific) USB function.
Is an address.
Means “valid.”
Is a frame count.
Is an address pointer.

Register Name Register Function Address
b7 b6 b5 b4 b3 b2 bl b0
bitname bitname bitname bitname bitname bitname bitname bitname
R, W access| R,W access| R,Waccess| R,Waccess| R,Waccess| R,Waccess| R, W access| R,W access
Default val Default val Default val Default val Default val Default val Default val Default val

Figure 12-1 illustrates the register description format used in this chapter.

» The top line shows the register name, functional description, and address in the

Figure 12-1. Register Description Format

EZ-USB memory.

* The second line shows the bit position in the register.

* The third line shows the name of each bit in the register.

» The fourth line shows 8051 accessibility: R(ead), W(rite), or R/W.

» The fifth line shows the default value. These values apply after a Power-On-Reset

(POR).

Page 12-2

Chapter 12. EZ-USB Registers

EZ-USB TRM v1.9

12.2 Bulk Data Buffers

INNBUF,OUTNBUF Endpoint 0-7 IN/OUT Data Buffers 1B40-1F3F*
b7 b6 b5 b4 b3 b2 bl bo
D7 D6 D5 D4 D3 D2 D1 DO
R/W R/W R/W R/W R/W R/W R/W R/W
X X X X X X X X

* See Table 12-1 for individual endpoint buffer addresses.

Figure 12-2. Bulk Data Buffers

Table 12-1. Bulk Endpoint Buffer Memory Addresses

Address Address Name Size
1F00-1F3F TF00-7F3F INOBUF 64
1ECO-1EFF TECO-7EFF OUTOBUF 64
1E80-1EBF TE80-7TEBF IN1BUF 64
1E40-1E7F TE40-TETF OUT1BUF 64
1E00-1E3F TE00-7E3F IN2BUF 64
1DCO-1DFF 7DCO-7DFF OUT2BUF 64
1D80-1DBF 7D80-7DBF IN3BUF 64
1D40-1D7F 7D40-7D7F OUT3BUF 64
1D00-1D3F 7D00-7D3F INABUF 64
1CC0-1CFF 7CCO0-7CFF OUT4BUF 64
1C80-1CBF 7C80-7CBF INSBUF 64
1C40-1C7F 7C40-7CTF OUT5BUF 64
1C00-1C3F 7C00-7C3F IN6BUF 64
1BCO-1BFF 7BCO-7BFF OUT6BUF 64
1B80-1BBF 7B80-7BBF IN7BUF 64
1B40-1B7F 7B40-7B7F OUT7BUF 64

Sixteen 64-byte bulk data buffers appear at 0Ox1BA@ 0x7B40 in the 8K version of EZ-
USB, and only at 0x7B40 in the 32K version of EZ-USB. The endpoints are ordered to
permit the reuse of the buffer space as contiguous RAM when the higher numbered end-
points are not used. These registers default to unknown states.

EZ-USB TRM v1.9 Chapter 12. EZ-USB Registers Page 12-3

12.3 Isochronous Data FIFOs

OUTNDATA EPBOUT-EP150UT FIFO Registers 7F60-7F67*
b7 b6 b5 b4 b3 b2 bl bo
D7 D6 D5 D4 D3 D2 D1 DO
R R R R R R R R
X X X X X X X X
INNDATA EP8IN-EP15IN FIFO Registers 7F68-7F6F*
b7 b6 b5 b4 b3 b2 bl bo
D7 D6 D5 D4 D3 D2 D1 DO
w w W w w w w W
X X X X X X X X

* See Table 12-2 for individual endpoint buffer addresses.

Figure 12-3. Isochronous Data FIFOs

Table 12-2. Isochronous Endpoint FIFO Register Addresses

Address Isochronous Data Name

TF60 Endpoint 8 OUT Data OUT8DATA

TF61 Endpoint 9 OUT Data OUTI9DATA

TF62 Endpoint 10 OUT Data | OUT10DATA

TF63 Endpoint 11 OUT Data OUT11DATA

TF64 Endpoint 12 OUT Data | OUT12DATA

TF65 Endpoint 13 OUT Data | OUT13DATA

TF66 Endpoint 14 OUT Data OUT14DATA

TF67 Endpoint 15 OUT Data OUT15DATA

7F68 Endpoint 8 IN Data IN8DATA
TF69 Endpoint 9 IN Data IN9DATA
TF6A Endpoint 10 IN Data IN1IODATA
T7F6B Endpoint 11 IN Data IN11DATA
TF6C Endpoint 12 IN Data IN12DATA
7F6D Endpoint 13 IN Data IN13DATA
TF6E Endpoint 14 IN Data IN14DATA
TF6F Endpoint 15 IN Data IN15DATA

Page 12-4 Chapter 12. EZ-USB Registers

EZ-USB TRM v1.9

Sixteen addressable data registers hold data from the eight isochronous IN endpoints and
the eight isochronous OUT endpoints. Reading a Data Register reads a Receive FIFO
byte (USB OUT data); writing a Data Register loads a Transmit FIFO byte (USB IN data).

EZ-USB TRM v1.9 Chapter 12. EZ-USB Registers Page 12-5

12.4 Isochronous Byte Counts
OUTnBCH OUT(8-15) Byte Count High TF70-7F7F*
b7 b6 b5 b4 b3 b2 bl b0
0 0 0 0 0 0 BC9 BC8
R R R R R R R R
X X
INNBCL OUT(8-15) Byte Count Low TF70-7F7F*
b7 b6 b5 b4 b3 b2 bl b0
BC7 BC6 BC5 BC4 BC3 BC2 BC1 BCO
R R R R R R R R
X X X X X X X X

* See Table 12-3 for individual endpoint buffer addresses.

Page 12-6

Figure 12-4. Isochronous Byte Counts

Table 12-3. Isochronous Endpoint Byte Count Register Addresses

Address Isochronous Data Name
TF70 Endpoint 8 Byte Count High OUT8BCH
TF71 Endpoint 8 Byte Count Low OUT8BCL
TF72 Endpoint 9 Byte Count High OUT9BCH
TF73 Endpoint 9 Byte Count Low OUT9BCL
TF74 Endpoint 10 Byte Count High OUT10BCH
TF75 Endpoint 10 Byte Count Low OUT10BCL
TF76 Endpoint 11 Byte Count High OUT11BCH
TF77 Endpoint 11 Byte Count Low OUT11BCL
TF78 Endpoint 12 Byte Count High OUT12BCH
TF79 Endpoint 12 Byte Count Low OUT12BCL
TFTA Endpoint 13 Byte Count High OUT13BCH
TF7B Endpoint 13 Byte Count Low OUT13BCL
TF7C Endpoint 14 Byte Count High OUT14BCH
TF7D Endpoint 14 Byte Count Low OUT14BCL
TFTE Endpoint 15 Byte Count High OUT15BCH
TFTF Endpoint 15 Byte Count Low OUT15BCL

Chapter 12. EZ-USB Registers

EZ-USB TRM v1.9

The EZ-USB core uses the byte count registers to report isochronous data payload sizes
for OUT data transferred from the host to the USB core. Ten bits of byte count data allow
payload sizes up to 1,023 bytes. A byte count of zero is valid, meaning that the host sent
no isochronous data during the previous frame. The default values of these registers are
unknown.

Byte counts are valid only for OUT endpoints. The byte counts indicate the number of
bytes remaining in the endpoint’s Receive FIFO. Every time the 8051 reads a byte from
the ISODATA register, the byte count decrements by one.

To read USB OUT data, the 8051 first reads byte count registers OUTnBCL and OUTn-
BCH to determine how many bytes to transfer out of the OUT FIFO. (The 8051 can also
quickly test ISO output endpoints for zero byte counts using the ZBCOUT register.)
Then, the CPU reads that number of bytes from the ISODATA register. Separate byte
counts are maintained for each endpoint, so the CPU can read the FIFOs in a discontinu-
ous manner. For example, if EP8 indicates a byte count of 100, and EP9 indicates a byte
count of 50, the CPU could read 50 bytes from EP8, then read 10 bytes from EP9, and
resume reading EP8. At this moment the byte count for EP8 would read 50.

There are no byte count registers for the IN endpoints. The USB core automatically tracks
the number of bytes loaded by the 8051.

If the 8051 does not load an IN isochronous endpoint FIFO during a 1-ms frame, and the
host requests data from that endpoint during the next frame (IN token), the USB Core
responds according to the setting of the ISOSENDO bit (USBPAIR.7). If ISOSENDO=1,
the core returns a zero-length data packet in response to the host IN token. If ISOS-
END=0, the core does not respond to the IN token.

It is the responsibility of the 8051 programmer to ensure that the number of bytes written
to the IN FIFO does not exceed the maximum packet size as reported during enumeration.

EZ-USB TRM v1.9 Chapter 12. EZ-USB Registers Page 12-7

12.5 CPU Registers

CPUCS CPU Control and Status 7F92
b7 b6 b5 b4 b3 b2 bl b0
RV3 RV2 RV1 RVO 0 0 CLK240E | 8051RES
R R R R R/W R
RV3 RV2 RV1 RVO 0 0 1 1

Figure 12-5. CPU Control and Status Register

This register enables the CLK24 output and permits the host to reset the 8051 using a
Firmware Download.

Bit 7-4: RVI[3..0] Silicon Revision
These register bits define the silicon revision. Consult individual Cypress Semiconductor

data sheets for values.

Bit 1: CLK240E Output enable - CLK24 pin
When this bit is set to 1, the internal 24-MHz clock is connected to the EZ-USB CLK24
pin. When this bitis 0, the CLK24 pin drives HI. This bit can be written by the 8051 only.

Bit O: 8051RES 8051 reset
The USB host writes “1” to this bit to reset the 8051, and “0” to run the 8051. Only the
USB host can write this bit.

Page 12-8 Chapter 12. EZ-USB Registers EZ-USB TRM v1.9

12.6 Port Configuration

PORTACFG IO Port A Configuration 7F93
b7 b6 b5 b4 b3 b2 bl b0
RxD1OUT | RxDOOUT FRD FWR cs OE T10UT TOOUT
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0
PORTBCFG IO Port B Configuration 7F94
b7 b6 b5 b4 b3 b2 bl b0
T20UT INT6 INT5 INT4 TXD1 RXD1 T2EX T2
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0
PORTCCFG IO Port C Configuration 7F95
b7 b6 b5 b4 b3 b2 bl b0
RD WR T1 TO INT1 INTO TXDO RXDO
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0

Figure 12-6. 10 Port Configuration Registers

These three registers control the three 10 ports on the EZ-USB chip. They select between
IO ports and various alternate functions. They are read/write by the 8051.

When PORTNCFG=0, the port pin functions as 10, using the OUT, PINS, and OE control
bits. Data written to an OUTn registers appears on an 10 Port pin if the corresponding
output enable bit (OEn) is HI.

When PORTNCFG=1, the pin assumes the alternate function shown in Table 12-4 on the

following page.

EZ-USB TRM v1.9

Chapter 12. EZ-USB Registers

Page 12-9

Page 12-10

Table 12-4.

10 Pin Alternate Functions

I/0 Name Alternate Functions
PAO TOOUT Timer 0 Output
PA1 T10UT Timer 1 Output
PA2 OE# External Memory Output Enable
PA3 CS# External Memory Chip Select
PA4 FWR# Fast Access Write Strobe
PA5 FRD# Fast Access Read Strobe
PA6 RXDOOUT Mode 0: UARTO Synchronous Data Output
PA7 RXD10OUT Mode 0: UART1 Synchronous Data Output
PBO T2 Timer/Counter 2 Clock Input
PB1 T2EX Timer/Counter 2 Capture/Reload Input
PB2 RxD1 Serial Port 1 Input
PB3 TxD1 Mode 0: Clock Output
Modes 1-3: Serial Port 1 Data Output
PB4 INT4 INT4 Interrupt Request
PBS INTS# INTS Interrupt Request
PB6 INT6 INT6 Interrupt Request
PB7 T20UT Timer/Counter 2 Overflow Indication
PCO RxDO Serial Port 0 Input
PC1 TxDO Mode 0: Clock Output
Modes 1-3: Serial Port 0 Data Output
PC2 INTO# INTO Interrupt Request
PC3 INT1# INTZ Interrupt Request
PC4 TO Timer/Counter 0 External Input
PC5 T1 Timer/Counter 1 External Input
PC6 WR# External Memory Write Strobe
PC7 RD# External Memory Read Strobe

Chapter 12. EZ-USB Registers

EZ-USB TRM v1.9

12.7

Input-Output Port Registers

OUTA Port A Outputs 7F96
b7 b6 b5 b4 b3 b2 bl b0
OUTA7 OUTA6 OUTAS5 OUTA4 OUTA3 OUTA2 OUTA1 OUTAO
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0
ouTB Port B Outputs 7F97
b7 b6 b5 b4 b3 b2 bl b0
ouTB7 ouTB6 OuUTB5 ouTB4 ouTB3 ouTB2 ouTB1 ouTBO
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0
ouTC Port C Outputs 7F98
b7 b6 b5 b4 b3 b2 bl b0
ouTC7 OuUTC6 OuUTC5 ouTC4 ouTC3 ouTC2 ouTC1 OouUTCO
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0

Figure 12-7. Output Port Configuration Registers

The OUTNn registers provide the data that drives the port pin when @Bdihe PORT-

NCFG pin is 0. If the port pin is selected a an input (OE=0), the value stored in the corre-

sponding OUTn bit is stored in an output latch but not used.

EZ-USB TRM v1.9

Chapter 12. EZ-USB Registers

Page 12-11

PINSA Port A Pins 7F99

b7 b6 b5 b4 b3 b2 bl b0
PINA7 PINAG PINA5S PINA4 PINA3 PINA2 PINAL1 PINAO
R R R R R R R R
X X X X X X X X
PINSB Port B Pins 7TF9A
b7 b6 b5 b4 b3 b2 bl b0
PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINBO
R R R R R R R R
X X X X X X X X
ouTC Port C Pins 7F98
b7 b6 b5 b4 b3 b2 bl b0
PINC7 PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINCO
R R R R R R R R
X X X X X X X X

Figure 12-8. PINSn Registers

The PINSh registers contain the current value of the port pins, whether they are selected as
IO ports or alternate functions.

Page 12-12 Chapter 12. EZ-USB Registers EZ-USB TRM v1.9

OEA Port A Output Enable 7F9C
b7 b6 b5 b4 b3 b2 bl b0
OEA7 OEA®6 OEA5 OEA4 OEA3 OEA2 OEAl OEAO
R/W R/W R/W R/W R/W R/W R/W R/W
X X X X X X X X
OEB Port B Output Enable 7F9D
b7 b6 b5 b4 b3 b2 bl b0
OEB7 OEB6 OEB5 OEB4 OEB3 OEB2 OEB1 OEBO
R/W R/W R/W R/W R/W R/W R/W R/W
X X X X X X X X
OEC Port C Output Enable 7F9E
b7 b6 b5 b4 b3 b2 bl b0
OEC7 OEC6 OEC5 OEC4 OEC3 OEC2 OEC1 OECO
R/W R/W R/W R/W R/W R/W R/W R/W

X

X

X

The OE registers control the output enables on the tri-state drivers connected to the port
pins. When these bits are “1,” the port is an output, unless the corresponding PORTNCFG

bitis settoa “1.”

EZ-USB TRM v1.9

Figure 12-9. Output Enable Registers

Chapter 12. EZ-USB Registers

Page 12-13

12.8 230-Kbaud UART Operation - AN2122, AN2126

UART230 230-Kbaud UART Control 7TFIF

b7 b6 b5 b4 b3 b2 bl b0
UART1 UARTO
R/W R/W
0 0 0 0 0 0 0 0
Figure 12-10. 230-Kbaud UART Operation Register
Bit 1: UART1 Universal 115/230 Kbaud operation for UART1
Bit O: UARTO Universal 115/230 Kbaud operation for UARTO

These bits, when set to “1,” connect an internal 3.69-MHz clock to UARTO and/or
UARTL1. The UARTSs divide this frequency by 16, giving a 230-KHz baud clock if the cor-
responding SMOD bit is set, or 115 baud clock if the corresponding SMOD bit is clear.
(NOTE: SMODO is bit 7 or SFR 0x87, SMOD1 is bit 7 or SFR 0xD8). When the UARTO
or UART1 bit is clear, the normal UART clock sources are used.

12.9 Isochronous Control/Status Registers

ISOERR Isochronous OUT EP Error 7FAQO
b7 b6 b5 b4 b3 b2 bl b0

ISO15ERR | ISO14ERR | ISO13ERR | ISO12ERR | ISO11ERR | ISO10ERR | ISO9ERR ISO8ERR
R R R R R R R R
X X X X X X X X

Figure 12-11. Isochronous OUT Endpoint Error Register

The ISOERR bits are updated at every SOF. They indicate that a CRC error was received
on a data packet for the current frame. The ISOERR bit status refers to the USB data
received in the previous frame, and which is currently in the endpoint's OUT FIFO. If the
ISOERR bit =1, indicating a bad CRC check, the data is still available in the OUTNDATA
register.

Page 12-14 Chapter 12. EZ-USB Registers EZ-USB TRM v1.9

ISOCTL Isochronous Control 7TFAl
b7 b6 b5 b4 b3 b2 bl b0
PPSTAT MBZ MBZ ISODISAB
R R R RIW RIW RIW
0 0 0 0 0 0 0 0
Figure 12-12. Isochronous Control Register
Bit 3: PPSTAT Ping-Pong Status

This bit indicates the isochronous buffer currently in use by the EZ-USB core. Itis used
only for diagnostic purposes.

Bits 2,1: MBZ Must be zero

These bits must always be written with zeros.

Bit O: ISODISAB 1SO Endpoints Disable
ISODISAB=0 enables all 16 isochronous endpoints

ISODISAB=1 disablesll 16 isochronous endpoints, making the 2,048 bytes of isochro-
nous FIFO memory available as 8051 data memory at 0x2000-0x27FF.

ZBCOUT Zero Byte Count Bits TFA2
b7 b6 b5 b4 b3 b2 bl b0
EP15 EP14 EP13 EP12 EP11 EP10 EP9 EP8
R R R R R R R R
X X X X X X X X

Figure 12-13. Zero Byte Count Register
Bits 0-7: EP(n) Zero Byte Count for ISO OUT Endpoints

The 8051 can check these bits as a fast way to check all of the OUT isochronous endpoints
at once for no data received during the previous frame. A “1”in any bit position means
that a zero byte Isochronous OUT packet was received for the indicated endpoint.

EZ-USB TRM v1.9 Chapter 12. EZ-USB Registers Page 12-15

12.10 PC Registers

12CS |2C Control and Status TFAS
b7 b6 b5 b4 b3 b2 b1l b0
START STOP LASTRD ID1 IDO BERR ACK DONE
R/W R/W R/W R R R R R
0 0 0 X X 0 0 0
I2DAT 12C Data 7TFAG
b7 b6 b5 b4 b3 b2 bl b0
D7 D6 D5 D4 D3 D2 D1 DO
R/W R/W R/W R/W R/W R/W R/W R/W
X X X X X X X X

Figure 12-14. C Transfer Registers

The 8051 uses these registers to transfer data over the EZATIRIS.

Bit 7: START Signal START condition

The 8051 sets the START bit to “1” to prepare 88 bus transfer. If START=1, the next
8051 load to I2DAT will generate the start condition followed by the serialized byte of
data in I2DAT. The 8051 loads byte data into I2DAT after setting the START bit. 3e |
controller clears the START bit during the ACK interval.

Bit 6: STOP Signal STOP condition

The 8051 sets STOP=1 to terminate &0 bus transfer. The’C controller clears the

STOP bit after completing the STOP condition. If the 8051 sets the STOP bit during a
byte transfer, the STOP condition will be generated immediately following the ACK phase
of the byte transfer. If no byte transfer is occurring when the STOP bit is set, the STOP
condition will be carried out immediately on the bus. Data should not be written to 12CS
or I2DAT until the STOP bit returns low.

Page 12-16 Chapter 12. EZ-USB Registers EZ-USB TRM v1.9

Bit 5: LASTRD Last Data Read

To read data over théQ bus, aniC master floats the SDA line and issues clock pulses on
the SCL line. After every eight bits, the master drives SDA low for one clock to indicate
ACK. To signal the last byte of the read transfer, the master floats SDA at ACK time to
instruct the slave to stop sending. This is controlled by the 8051 by setting LastRD=1
before reading the last byte of a read transfer. Pecbntroller clears the LastRD bit at
the end of the transfer (at ACK time).

Note

Setting LastRD does not automatically generate a STOP condition. The 8051 shquld
also set the STOP bit at the end of a read transfer.

Bit 4-3: ID1,IDO Boot EEPROM ID

These bits are set by the boot loader to indicate whether an 8-bit address or 16-bit address
EEPROM at slave address 000 or 001 was detected at power-on. Normally, they are used
for debug purposes only.

Bit 2: BERR Bus Error

This bit indicates an’C bus error. BERR=1 indicates that there was bus contention,
which results when an outside device drives the bus LO when it shouldn’t, or when
another bus master wins arbitration, taking control of the bus. BERR is cleared when
8051 reads or writes the IDATA register.

Bit 1: ACK Acknowledge bit

Every ninth SCL or a write transfer the slave indicates reception of the byte by asserting
ACK. The EZ-USB controller floats SDA during this time, samples the SDA line, and
updates the ACK bit with the complement of the detected value. ACK=1 indicates
acknowledge, and ACK=0 indicates not-acknowledge. The EZ-USB core updates the
ACK bit at the same time it sets DONE=1. The ACK bit should be ignored for read trans-
fers on the bus.

EZ-USB TRM v1.9 Chapter 12. EZ-USB Registers Page 12-17

Bit O: DONE 12C Transfer DONE

The PC controller sets this bit whenever it completes a byte transfer, right after the ACK
stage. The controller also generates4hihterrupt request (8051 INT3) when it sets the

DONE bit. The PC controller automatically clears the DONE bit and tF@ interrupt
request bit whenever the 8051 reads or writes the I2DAT register.

I2CMODE I2C Mode TFAT7
b7 b6 b5 b4 b3 b2 b1 bo
STOPIE
RIW
0 0 0 0 0 0 0 0

Figure 12-15. fC Mode Register

The PC interrupt includes one additional interrupt source in the AN2122/AN2126, a 1-0
transition of the STOP bit. To enable this interrupt, set the STOPIE bit in the I2CMODE
register. The 8051 determines the interrupt source by checking the DONE and STOP bits
in the 12CS register.

Page 12-18 Chapter 12. EZ-USB Registers EZ-USB TRM v1.9

12.11 Interrupts
IVEC Interrupt Vector 7FA8
b7 b6 b5 b4 b3 b2 bl b0
0 Va4 V3 V2 V1 IVO 0 0
R R R R R R R R
0 0 0 0 0 0 0 0

IVEC indicates the source of an interrupt from the USB Core. When the USB core gener-
ates an INT2 (USB) interrupt request, it updates IVEC to indicate the source of the inter-

Figure 12-16. Interrupt Vector Register

rupt. The interrupt sources are encoded on 1V[4..0] as shown in Figure 9-2.

EZ-USB TRM v1.9

Chapter 12. EZ-USB Registers

Page 12-19

INO7IRQ Endpoint 0-7 IN Interrupt Request 7FA9
b7 b6 b5 b4 b3 b2 bl b0
IN7IR INGIR INSIR IN4IR IN3IR IN2IR IN1IR INOIR
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0
OUTO7IRQ Endpoint 0-7 OUT Interrupt Requests TFAA
b7 b6 b5 b4 b3 b2 bl b0
OUT7IR OUT6IR OUTSIR OUT4IR OUT3IR OUT2IR OUTI1IR OUTOIR
R/W R/W R/W R/W R/W R/W R/W R/W
X X X X X X X X

Figure 12-17. IN/OUT Interrupt Request (IRQ) Registers

These interrupt request (IRQ) registers indicate the pending interrupts for each bulk end-
point. An interrupt request (IR) bit becomes active when the BSY bit for an endpoint
makes a transition from one to zero (the endpoint becamdsusygiving access to the
8051). The IR bits function independently of the Interrupt Enable (IE) bits, so interrupt
requests are held whether or not the interrupts are enabled.

The 8051 clears an interrupt request bit by writing a “1” to it (see the following Note).

Note

Do not clear an IRQ bit by reading an IRQ register, ORing its contents with a bit mask,
and writing back the IRQ register. This will clear ALL pending interrupts. Instead,|sim-
ply write the bit mask value (with the IRQ you want to clear) directly to the IRQ regjster.

Page 12-20

Chapter 12. EZ-USB Registers

EZ-USB TRM v1.9

USBIRQ USB Interrupt Request 7FAB
b7 b6 b5 b4 b3 b2 bl b0
IBNIR* URESIR SUSPIR SUTOKIR SOFIR SUDAVIR
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0

* AN2122/AN2126 only.

Figure 12-18. USB Interrupt Request (IRQ) Registers

USBIRQ indicates the interrupt request status of the USB reset, suspend, setup token, start
of frame, and setup data available interrupts.

Bit 5: IBNIR IN Bulk NAK Interrupt Request

This bitis inthe AN2122 and AN2126 versions only. The EZ-USB core sets this bit when
any of the IN bulk endpoints responds to an IN token with a NAK. This interrupt occurs
when the host sends an IN token to a bulk IN endpoint which has notdresdby the

8051 writing its byte count register. Individual enables and requests (per endpoint) are

controlled by the IBNIRQ and IBNIEN registers (7FBO, 7FB1).

Bit 4: URESIR USB Reset Interrupt Request

The EZ-USB core sets this bit to “1” when it detects a USB bus reset.

Because this bit can change state while the 8051 is in reset, it may be active when the 8051
comes out of reset, although it is reset to “0” by a power-on reset. Write a “1” to this bit to
clear the interrupt request. See Chapter 10, "EZ-USB Resets" for more information about
this bit.

Bit 3: SUSPIR USB Suspend Interrupt Request
The EZ-USB core sets this bit to “1” when it detects USB SUSPEND signaling (no bus

activity for 3 ms). Write a “1” to this bit to clear the interrupt request.

Because this bit can change state while the 8051 is in reset, it may be active when the 8051
comes out of reset, although it is reset to “0” by a power-on reset. See Chapter 11, "EZ-
USB Power Management" for more information about this bit.

EZ-USB TRM v1.9 Chapter 12. EZ-USB Registers Page 12-21

Bit 2: SUTOKIR SETUP Token Interrupt Request

The EZ-USB core sets this bit to “1” when it receives a SETUP token. Write a “1” to this

bit to clear the interrupt request. See Chapter 7, "EZ-USB Endpoint Zero" for more infor-
mation on the handling of SETUP tokens.

Because this bit can change state while the 8051 is in reset, it may be active when the 8051
comes out of reset, although it is reset to “0” by a power-on reset.

Bit 1: SOFIR Start of frame Interrupt Request

The EZ-USB core sets this bit to “1” when it receives a SOF packet. Write a “1” to this bit
to clear the interrupt condition.

Because this bit can change state while the 8051 is in reset, it may be active when the 8051
comes out of reset, although it is reset to “0” by a power-on reset.

Bit O: SUDAVIR SETUP data available Interrupt Request

The EZ-USB core sets this bit to “1” when it has transferred the eight data bytes from an
endpoint zero SETUP packet into internal registers (at SETUPDAT). Write a “1” to this

bit to clear the interrupt condition.

Because this bit can change state while the 8051 is in reset, it may be active when the 8051
comes out of reset, although it is reset to “0” by a power-on reset.

Page 12-22 Chapter 12. EZ-USB Registers EZ-USB TRM v1.9

INO7EN Endpoint 0-7 IN Interrupt Enables 7FAC
b7 b6 b5 b4 b3 b2 bl bo
IN7IEN INGIEN INSIEN IN4IEN IN3IEN IN2IEN INLIEN INOIEN
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0
OUTO7IEN Endpoint 0-7 OUT Interrupt Enables 7FAD
b7 b6 b5 b4 b3 b2 bl b0
OUT7IEN | OUTBIEN | OUTSIEN | OUT4IEN | OUT3IEN | OUT2IEN | OUTLIEN | OUTOIEN
R/W R/W R/W R/W R/W R/W R/W R/W
X X X X X X X X

Figure 12-19. IN/OUT Interrupt Enable Registers

The Endpoint Interrupt Enable registers define which endpoints have active interrupts.
They do not affect the endpoint action, only the generation of an interrupt in response to
endpoint events.

When the IEN bit for an endpoint is “0,” the interrupt request bit for that endpoint is
ignored, but saved. When the IEN bit for an endpointis “1,” any IRQ bit equal to “1” gen-
erates an 8051 INT2 request.

Note

The INT2 interrupt (EIE.O) and the 8051 global interrupt enable (EA) must be enabled
for the endpoint interrupts to propagate to the 8051. Once the INTZ2 interrupt is active, it
must be cleared by software.

EZ-USB TRM v1.9 Chapter 12. EZ-USB Registers Page 12-23

USBIEN USB Interrupt Enable 7TFAE
b7 b6 b5 b4 b3 b2 bl bo
IBNIE* URESIE | SUSPIE | SUTOKIE | SOFIE | SUDAVIE
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0

* AN2122/AN2126 only.

Figure 12-20. USB Interrupt Enable Register

USBIEN bits gate the interrupt request to the 8051 for USB reset, suspend, SETUP token,
start of frame, and SETUP data available.

Bit 5: IBNIE IN bulk NAK Interrupt Enable

This bitis in the AN2122 and AN2126 versions only. The 8051 sets this bit to enable the
IN-bulk-NAK interrupt. This interrupt occurs when the host sends an IN token to a bulk
IN endpoint which has not beearmedby the 8051 writing its byte count register. Indi-
vidual enables and requests (per endpoint) are controlled by the IBNIRQ and IBNIEN reg-

isters (7FBO, 7FB1).

Bit 4: URESIE USB Reset Interrupt Enable
This bit is the interrupt mask for the URESIR bit. When this bit is “1,” the interrupt is

enabled, when itis “0,” the interrupt is disabled.

Bit 3: SUSPIE USB Suspend Interrupt Enable
This bit is the interrupt mask for the SUSPIR bit. When this bit is “1,” the interrupt is

enabled, when itis “0,” the interrupt is disabled.

Bit 2: SUTOKIE SETUP Token Interrupt Enable

This bit is the interrupt mask for the SUTOKIR bit. When this bit is “1,” the interrupt is
enabled, when itis “0,” the interrupt is disabled.

Page 12-24 Chapter 12. EZ-USB Registers EZ-USB TRM v1.9

Bit 1: SOFIE Start of frame Interrupt Enable

This bit is the interrupt mask for the SOFIE bit. When this bit is “1,” the interrupt is
enabled, when it is “0,” the interrupt is disabled.

Bit O: SUDAVIE SETUP data available Interrupt Enable

This bit is the interrupt mask for the SUDAVIE bit. When this bitis “1,” the interrupt is
enabled, when itis “0,” the interrupt is disabled.

EZ-USB TRM v1.9 Chapter 12. EZ-USB Registers Page 12-25

USBBAV Breakpoint and Autovector TFAF
b7 b6 b5 b4 b3 b2 bl b0
BREAK BPPULSE BPEN AVEN
RIW RIW RIW RIW RIW RIW RIW RIW
0 0 0 0 0 0 0 0
Figure 12-21. Breakpoint and Autovector Register
Bit 3: BREAK Breakpoint enable

The BREAK bit is set when the 8051 address bus matches the address held in the bit
breakpoint address registers (next page). The BKPT pin reflects the state of this bit. The
8051 writes a “1” to the BREAK bit to clear it. It is not necessary to clear the BREAK bit

if the pulse mode bit (BPPULSE) is set.

Bit 2: BPPULSE Breakpoint pulse mode

The 8051 sets this bit to “1” to pulse the BREAK bit (and BKPT pin) high for 8 CLK24

cycles when the 8051 address bus matches the address held in the breakpoint address reg-
isters. when this bit is set to “0,” the BREAK bit (and BKPT pin) remains high until it is
cleared by the 8051.

Bit 1: BPEN Breakpoint enable

If this bitis “1,” a BREAK signal is generated whenever the 16-bit address lines match the
value in the Breakpoint Address Registers (BPADDRH/L). The behavior of the BREAK
bit and associated BKPT pin signal is either latched or pulsed, depending on the state of
the BPPULSE bit.

Bit O: AVEN Auto-vector enable

If this bitis “1,” the EZ-USB Auto-vector feature is enabled. Ifitis O, the auto-vector fea-
ture is disabled. See Chapter 9, "EZ-USB Interrupts” for more information on the auto-
vector feature.

Page 12-26 Chapter 12. EZ-USB Registers EZ-USB TRM v1.9

IBNIRQ IN Bulk NAK Interrupt Requests 7FBO
b7 b6 b5 b4 b3 b2 b1 bo
EP6IN EPS5IN EP4IN EP3IN EP2IN EP1IN EPOIN
R/W R/W R/W R/W R/W R/W R/W R/W
X X X X X X X X

* AN2122/AN2126 only.

Figure 12-22. IN Bulk NAK Interrupt Request Register

These bits are set when a bulk IN endpoint (0-6) received an IN token while the endpoint
was notarmedfor data transfer. In this case the SIE automatically sends a NAK response,
and sets the corresponding IBNIRQ bit. If the IBN interrupt is enabled (USBIEN.5=1),
and the endpoint interrupt is enabled in the IBNIEN register, an interrupt is request gener-
ated. The 8051 can test the IBNIRQ register to determine which of the endpoints caused
the interrupt. The 8051 clears an IBNIRQ bit by writing a “1” to it.

IBNIEN IN Bulk NAK Interrupt Enables 7FB1
b7 b6 b5 b4 b3 b2 bl b0
EP6IN EP5IN EP4IN EP3IN EP2IN EP1IN EPOIN
R/W R/W R/W R/W R/W R/W R/W R/W
X X 0 0 0 0 0 0

Each of the individual IN endpoints may be enabled for an IBN interrupt using the IBNEN
register. The 8051 sets an interrupt enable bit to 1 to enable the corresponding interrupt.

EZ-USB TRM v1.9

Figure 12-23. IN Bulk NAK Interrupt Enable Register

Chapter 12. EZ-USB Registers

Page 12-27

BPADDRH Breakpoint Address High 7FB2
b7 b6 b5 b4 b3 b2 bl b0
A15 Al4 A13 A12 A1l A10 A9 A8
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0
BPADDRL Breakpoint Address Low 7FB3
b7 b6 b5 b4 b3 b2 bl b0
A7 A6 A5 A4 A3 A2 Al A0
R/W R/W R/W R/W R/W R/W R/W R/W
X X X X X X X X

Figure 12-24. IN/OUT Interrupt Enable Registers

When the current 16-bit address (code or xdata) matches the BPADDRH/BPADDRL
address, a breakpoint event occurs. The BPPULSE and BPEN bits in the USBBAV regis-
ter control the action taken on a breakpoint event.

If the BPEN bit is “0,” address breakpoints are ignored. If BPEN is “1” and BPPULSE is
“1,” an 8 CLK24 wide pulse appears on the BKPT pin. If BPEN is “1” and BPPULSE is
“0,” the BKPT pin remains active until the 8051 clears the BREAK bit by writing “1” to it.

Page 12-28 Chapter 12. EZ-USB Registers EZ-USB TRM v1.9

12.12 Endpoint 0 Control and Status Registers

EPOCS Endpoint Zero Control and Status 7FB4
b7 b6 b5 b4 b3 b2 bl b0
OUTBSY INBSY HSNAK EPOSTALL
R R R/W R/W
0 0 0 0 1 0 0 0
INOBC Endpoint Zero IN Byte Count 7FB5
b7 b6 b5 b4 b3 b2 bl b0
BC6 BC5 BC4 BC3 BC2 BC1 BCO
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0
OuUTOBC Endpoint Zero OUT Byte Count 7FC5
b7 b6 b5 b4 b3 b2 bl b0
BC6 BC5 BC4 BC3 BC2 BC1 BCO
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0

Figure 12-25. Port Configuration Registers

These registers control EZ-USB CONTROL endpoint zero. Because endpoint zero is a bi-
directional endpoint, the IN and OUT functionality is controlled by a single control and
status (CS) register, unlike endpoints 1-7, which have separate INCS and OUTCS regis-
ters.

Bit 3: OuTBSY OUT Endpoint Busy

OUTBSY is a read-only bit that is automatically cleared when a SETUP token arrives.
The 8051 sets the OUTBSY bit by writing a byte count to EPOUTBC.

EZ-USB TRM v1.9 Chapter 12. EZ-USB Registers Page 12-29

If the CONTROL transfer uses an OUT data phase, the 8051 must load a dummy byte
count into OUTOBC to arm the OUT endpoint buffer. Until it does, the EZ-USB core will
NAK the OUT tokens.

Bit 2: INBSY IN Endpoint Busy

INBSY is a read-only bit that is automatically cleared when a SETUP token arrives. The
8051 sets the INBSY bit by writing a byte count to INOBC.

If the CONTROL transfer uses an IN data phase, the 8051 loads the requested data into the
INOBUF buffer, and then loads the byte count into INOBC to arm the data phase of the
CONTROL transfer. Alternatively, the 8051 can arm the data transfer by loading an
address into the Setup Data Pointer registers SUDPTRH/L. Until armed, the EZ-USB

core will NAK the IN tokens.

Bit 1: HSNAK Handshake NAK

HSNAK (Handshake NAK) is a read/write bit that is automatically set when a SETUP
token arrives. The 8051 clears HSNAK by writing a “1” to the register bit.

While HSNAK=1, the EZ-USB core NAKs the handshake (status) phase of the CON-
TROL transfer. When HSNAK=0, it ACKs the handshake phase. The 8051 can clear
HSNAK at any time during a CONTROL transfer.

Bit O: EPOSTALL Endpoint Zero Stall

EPOSTALL is a read/write bit that is automatically cleared when a SETUP token arrives.
The 8051 sets EPOSTALL by writing a “1” to the register bit.

While EPOSTALL=1, the EZ-USB core sends the STALL PID for any IN or OUT token.
This can occur in either the data or handshake phase of the CONTROL transfer.

Note

To indicate an endpoint stall on endpoint zero, set both EPOSTALL and HSNAK bits.
Setting the EPOSTALL bit alone causes endpoint zero to NAK forever because the host
keeps the control transfer pending.

Page 12-30 Chapter 12. EZ-USB Registers EZ-USB TRM v1.9

12.13 Endpoint 1-7 Control and Status Registers

Endpoints 1-7 IN and OUT are used for bulk or interrupt data. Table 12-5 shows the
addresses for the control/status and byte count registers associated with these endpoints.
The bi-directional CONTROL endpoint zero registers are described in Section 12.12,
"Endpoint 0 Control and Status Registers."

Table 12-5. Control and Status Register Addresses for Endpoints 0-7

Address Function Name
7FB4 | Control and Status - Endpoint INO EPOCS
7FB5 | Byte Count - Endpoint INO INOBC
7FB6 | Control and Status - Endpoint IN1 IN1CS
7FB7 | Byte Count - Endpoint IN1 IN1BC
7FB8 | Control and Status - Endpoint IN2 IN2CS
7FB9 | Byte Count - Endpoint IN2 IN2BC
7FBA | Control and Status - Endpoint IN3 IN3CS
7FBB | Byte Count - Endpoint IN3 IN3BC
7FBC | Control and Status - Endpoint IN4 IN4CS
7FBD | Byte Count - Endpoint IN4 IN4BC
7FBE | Control and Status - Endpoint IN5 INSCS
7FBF | Byte Count - Endpoint IN5 INSBC
7FCO | Control and Status - Endpoint IN6 IN6CS
7FC1 | Byte Count - Endpoint IN6 IN6BC
7FC2 | Control and Status - Endpoint IN7 IN7CS
7FC3 | Byte Count - Endpoint IN7 IN7BC
7FC4 | Reserved
7FC5 | Byte Count - Endpoint OUTO OuUTO0BC
7FC6 | Control and Status - Endpoint OUT1 OUTICS
7FC7 | Byte Count - Endpoint OUT1 OUT1BC
7FC8 | Control and Status - Endpoint OUT2 ouT2CS
7FC9 | Byte Count - Endpoint OUT2 OuUT2BC
7FCA | Control and Status - Endpoint OUT3 0u37Cs
7FCB | Byte Count - Endpoint OUT3 OUT3BC
7FCC | Control and Status - Endpoint OUT4 OUT4CS
7FCD | Byte Count - Endpoint OUT4 OUT4BC
7FCE | Control and Status - Endpoint OUT5 OUT5CS
7FCF | Byte Count - Endpoint OUT5 OUT5BC
7FDO | Control and Status - Endpoint OUT6 OUT6CS
7FD1 | Byte Count - Endpoint OUT6 OUT6BC
7FD2 | Control and Status - Endpoint OUT7 OuT7CS
7FD3 | Byte Count - Endpoint OUT7 OuUT7BC

EZ-USB TRM v1.9 Chapter 12. EZ-USB Registers Page 12-31

INNCS Endpoint (1-7) IN Control and Status 7FB6-7FC2*
b7 b6 b5 b4 b3 b2 bl bo
INNBSY INNSTL
R R/W RIW
0 0 0 0 0 0 0 0

* See Table 12-5 for individual control/status register addresses.

Figure 12-26. IN Control and Status Registers

Bit 1: INNBSY IN Endpoint (1-7) Busy

The BSY bit indicates the status of the endpoint’s IN Buffer INnBUF. The EZ-USB core
sets BSY=0 when the endpoint’s IN buffer is empty and ready for loading by the 8051.
The 8051 sets BSY=1 by loading the endpoint’s byte count register.

When BSY=1, the 8051 should not write data to an IN endpoint buffer, because the end-
point FIFO could be in the act of transferring data to the host over the USB. BSY=0 when
the USB IN transfer is complete and endpoint RAM data is available for 8051 access.
USB IN tokens for the endpoint are NAKd while BSY=0 (the 8051 is still loading data
into the endpoint buffer).

A 1-t0-0 transition of BSY (indicating that the 8051 can access the buffer) generates an
interrupt request for the IN endpoint. After the 8051 writes the data to be transferred to
the IN endpoint buffer, it loads the endpoint’s byte count register with the number of bytes
to transfer, which automatically sets BSY=1. This enables the IN transfer of data to the
host in response to the next IN token. Again, the CPU should never load endpoint data
while BSY=1.

The 8051 writes a “1” to an IN endpoint busy bit to disarm a previously armed endpoint.
(This sets BSY=0.) The 8051 program should do this only after a USB bus reset, or when
the host selects a new interface or alternate setting that uses the endpoint. This prevents
stale data from a previous setting from being accepted by the host’s first IN transfer that
uses the new setting.

Note:

Even though the register description shows bit 1 as “R/W,” the 8051 can only clear this
bit by writing a “1” to it. The 8051 can not directly set this bit.

To disarm a paired IN endpoint, write a “1” to the busy bit bmth endpoints in the pair.

Page 12-32 Chapter 12. EZ-USB Registers EZ-USB TRM v1.9

Bit O: INNSTL IN Endpoint (1-7) Stall
The 8051 sets this bit to “1” tetall an endpoint, and to “0” to clear a stall.

When the stall bit is “1,” the EZ-USB core returns a STALL Handshake for all requests to
the endpoint. This notifies the host that something unexpected has happened.

The 8051 sets an endpoint’s stall bit under two circumstances:

1. The host sends a “Set_Feature—Endpoint Stall” request to the specific endpoint.

2. The 8051 encounters asfiow stoppeerror on the endpoint, and sets the stall bit
to tell the host to halt traffic to the endpoint.

The 8051 clears an endpoint’s stall bit under two circumstances:

1. The host sends a “Clear_Feature--Endpoint Stall” request to the specific endpoint.

2. The 8051 receives some other indication from the host that the stall should be
cleared (this is referred to as “host intervention” in the USB Specification). This
indication could be a USB bus reset.

All stall bits are automatically cleared when the EZ-USB chip ReNumérabsspulsing
the DISCON bit HI.

EZ-USB TRM v1.9 Chapter 12. EZ-USB Registers Page 12-33

INNBC Endpoint (1-7) IN Byte Count 7TFB7-7TFC3*
b7 b6 b5 b4 b3 b2 bl bo
D6 D5 D4 D3 D2 D1 DO
R/W R/W R/W R/W R/W R/W R/W R/W
X X X X X X X X

* See Table 12-5 for individual byte count register addresses.

Figure 12-27. IN Byte Count Registers

The 8051 writes this register with the number of bytes it loaded into the IN endpoint
buffer INNBUF. Writing this register alsarmsthe endpoint by setting the endpoint BSY
bitto 1.

Legal values for these registers are 0-64. A zero transfer size is used to terminate a trans-
fer that is an integral multiple of MaxPacketSize. For example, a 256-byte transfer with
maxPacketSize = 64, would require four packets of 64 bytes each plus one packet of 0
bytes.

The IN byte count should never be written while the endpoint’s BUSY bit is set.

When the register pairing feature is used (Section 6, "EZ-USB Bulk Transfers") IN2BC is
used for the EP2/EP3 pair, INABC is used for the EP4/EP5 pair, and IN6BC is used for the
EPG6/EP7 pair. In thpaired(double-buffered) mode, after the first write to the even-num-
bered byte count register, the endpoint BSY bit remains at 0, indicating that only one of
the buffers is full, and the other is still empty. The odd numbered byte count register is not
used when endpoints are paired.

Page 12-34 Chapter 12. EZ-USB Registers EZ-USB TRM v1.9

ouTnCS Endpoint (1-7) OUT Control and Status 7FC6-7FD2*

b7 b6 b5 b4 b3 b2 bl b0

OUTnBSY | OUTNnSTL

R RIW
0 0 0 0 0 0 0 0

* See Table 12-5 for individual control/status register addresses.

Figure 12-28. OUT Control and Status Registers

Bit 1: OUTnBSY OUT Endpoint (1-7) Busy

The BSY bit indicates the status of the endpoint’s OUT Buffer OUTnBUF. The EZ-USB
core sets BSY=0 when the host data is available in the OUT buffer. The 8051 sets BSY=1
by loading the endpoint’s byte count register.

When BSY=1, endpoint RAM data is invalid--the endpoint buffer has been emptied by the
8051 and is waiting for new OUT data from the host, or it is the process of being loaded
over the USB. BSY=0 when the USB OUT transfer is complete and endpoint RAM data
in OUTNnBUF is available for the 8051 to read. USB OUT tokens for the endpoint are
NAKd while BSY=1 (the 8051 is still reading data from the OUT endpoint).

A 1-t0-0 transition of BSY (indicating that the 8051 can access the buffer) generates an
interrupt request for the OUT endpoint. After the 8051 reads the data from the OUT end-
point buffer, it loads the endpoint’s byte count register with any value to re-arm the end-
point, which automatically sets BSY=1. This enables the OUT transfer of data from the
host in response to the next OUT token. The CPU should never read endpoint data while
BSY=1.

Bit O: OUTnSTL OUT Endpoint (1-7) Stall

The 8051 sets this bit to “1” tetall an endpoint, and to “0” to clear a stall.

When the stall bit is “1,” the EZ-USB core returns a STALL Handshake for all requests to
the endpoint. This notifies the host that something unexpected has happened.

The 8051 sets an endpoint’s stall bit under two circumstances:

1. The host sends a “Set_Feature—Endpoint Stall” request to the specific endpoint.

EZ-USB TRM v1.9 Chapter 12. EZ-USB Registers Page 12-35

2. The 8051 encounters askiow stoppeerror on the endpoint, and sets the stall bit
to tell the host to halt traffic to the endpoint.

The 8051 clears an endpoint’s stall bit under two circumstances:

1. The hostsends a “Clear_Feature—Endpoint Stall” request to the specific endpoint.

2. The 8051 receives some other indication from the host that the stall should be
cleared (this is referred to as “host intervention” in the USB Specification).

All stall bits are automatically cleared when the EZ-USB chip ReNumerates

OuUTnBC Endpoint (1-7) OUT Byte Count 7TFC7-7FD3*
b7 b6 b5 b4 b3 b2 bl b0
D6 D5 D4 D3 D2 D1 DO
R/W
0 0 0 0 0 0 0 0

* See Table 12-5 for individual control/status register addresses.

Figure 12-29. OUT Byte Count Registers

The 8051 reads this register to determine the number of bytes sent to an OUT endpoint.
Legal sizes are O - 64 bytes.

Each EZ-USB bulk OUT endpoint has a byte count register, which serves two purposes.
The 8051readsthe byte count register to determine how many bytes were received during
the last OUT transfer from the host. The 80Bftesthe byte count register (with any
value) to tell the EZ-USB core that it has finished reading bytes from the buffer, making
the buffer available to accept the next OUT transfer. Writing the byte count register sets
the endpoint’s BSY bit to “1.”

When the register-pairing feature is used, OUT2BC is used for the EP2/EP3 pair,
OUT4BC is used for the EP4/EPS5 pair, and OUT6BC is used for the EP6/EP7 pair. The
odd-numbered byte count registers should not be used. When the 8051 writes a byte to the
even numbered byte count register, the EZ-USB core switches buffers. If the other buffer
already contains data to be read by the 8051, the OUTnBSY bit remains at “0.”

All OUT tokens are NAKd until the 8051 is released from RESET, whereupon the ACK/
NAK behavior is based on pairing.

Page 12-36 Chapter 12. EZ-USB Registers EZ-USB TRM v1.9

12.14 Global USB Registers

SUDPTRH Setup Data Pointer High 7FD4
b7 b6 b5 b4 b3 b2 bl b0
A15 Al4 A13 A12 A1l A10 A9 A8
R/W R/W R/W R/W R/W R/W R/W R/W
X X X X X X X X
SUDPTRL Setup Data Pointer Low 7FD5
b7 b6 b5 b4 b3 b2 bl b0
A7 A6 A5 A4 A3 A2 Al A0
R/W R/W R/W R/W R/W R/W R/W R/W
X X X X X X X X

Figure 12-30. Setup Data Pointer High/Low Registers

When the EZ-USB chip receives a “Get_Descriptor” request on endpoint zero, it can
instruct the EZ-USB core to handle the multi-packet IN transfer by loading these registers
with the address of an internal table containing the descriptor data. The descriptor data
tables may be placed in internal program/data RAM or in uné&setpoint 0-7 RAM The
SUDPTR does not operate with external memory. The SUDPTR registers should be
loaded in HIGH/LOW order.

In addition to loading SUDPTRL, the 8051 must also clear the HSNAK bit in the EPOCS
register (by writing a “1” to it) to complete the CONTROL transfer.

Note

Any host request that uses the EZ-USB Setup Data Pointer to transfer IN data mujst indi-
cate the number of bytes to transfer in bytes 6 (wLenghthL) and 7 (wLengthH) of the
SETUP packet. These bytes are pre-assigned in the USB Specification to be length bytes
in all standard device requests such as “Get_Descriptor.” If vendor-specific requests are
used to transfer large blocks of data using the Setup Data Pointer, they must include this
pre-defined length field in bytes 6-7 to tell the EZ-USB core how many bytes to transfer

using the Setup Data Pointer.

EZ-USB TRM v1.9 Chapter 12. EZ-USB Registers Page 12-37

USBCS USB Control and Status 7FD6
b7 b6 b5 b4 b3 b2 bl b0
WAKESRC DISCON DISCOE RENUM SIGRSUME
R/W R R/W R/W R/W R/W
0 0 0 0 0 1 0 0

Figure 12-31. USB Control and Status Registers
Bit 7: WAKESRC Wakeup source

This bit indicates that a high to low transaction was detected on the WAKEUP# pin. Writ-
ing a “1” to this bit resets it to “0.”

Bit 3: DISCON Signal a Disconnect on the DISCON# pin
The EZ-USB DISCON# pin reflects the complement of this bit. This bit is normally set to
0 so that the action of the DISCOE bit (below) either floats the DISCON# pin or drives it

HI.

Bit 2: DISCOE Disconnect Output Enable
DISCOE controls the output buffer on the DISCON# pin. When DISCOE=0, the pin

floats, and when DISCOE=1, it drives to the complement of the DISCON bit (above).

DISCOE is used in conjunction with the RENUM bit to perform ReNumerati¢gGhap-
ter 5, "EZ-USB Enumeration and ReNumeratioh).

Page 12-38 Chapter 12. EZ-USB Registers EZ-USB TRM v1.9

Bit 1: RENUM ReNumerate

This bit controls which entity, the USB core or the 8051, handles USB device requests.
When RENUM=0, the EZ-USB core handles all device requests. When RENUM=1, the
8051 handles all device requests except Set_Address.

The 8051 sets RENUM=1 during a bus disconnect to transfer USB control to the 8051.
The EZ-USB core automatically sets RENUM=1 under two conditions:

1. Completion of a “B2” boot load (Chapter 5, "EZ-USB Enumeration and ReNumer-
ation").

2. When external memory is used (EA=1) and no béGtEEPROM is used (see
Section 10.3.3, "External ROM").
Bit O: SIGRSUME Signal remote device resume
The 8051 sets SIGRSUME=1 to drive the “K” state onto the USB bus. This should be
done only by a device that is capable of remote wakeup, and then only during the SUS-

PEND state. To signal RESUME, the 8051 sets SIGRSUME=1, waits 10-15 ms, then sets
SIGRSUME=0.

EZ-USB TRM v1.9 Chapter 12. EZ-USB Registers Page 12-39

TOGCTL Data Toggle Control 7FD7
b7 b6 b5 b4 b3 b2 bl b0
Q S R 10 0 EP2 EP1 EPO
R RIW RIW RIW RIW RIW RIW RIW
X X X X X X X X
Figure 12-32. Data Toggle Control Register
Bit 7: Q Data Toggle Value

Q=0 indicates DATAO and Q=1 indicates DATA1, for the endpoint selected by the 10 and
EP[2..0] bits. The 8051 writes the endpoint select bits (10 and EP[2..0]), before reading
this value.

Bit 6: S Set Data Toggle to DATAL

After selecting the desired endpoint by writing the endpoint select bits (10 and EP[2..0])
the 8051 sets S=1 to set the data toggle to DATAL. The endpoint selection bits should not
be changed while this bit is written.

Note

At this writing there is no known reason to set an endpoint data toggle to 1. This hitis
provided for generality and testing only.

Bit 5: R Set Data Toggle to DATAQ

After selecting the desired endpoint by writing the endpoint select bits (10 and EP[2..0])
the 8051 sets R=1 to set the data toggle to DATAO. The endpoint selection bits should not
be changed while this bit is written. For advice on when to reset the data toggle, see Chap-
ter 7, "EZ-USB Endpoint Zero."

Bit 4: 10 Select IN or OUT endpoint
The 8051 sets this bit to select an endpoint direction prior to setting its R or S bit. 10=0
selects an OUT endpoint, I0=1 selects an IN endpoint.

Page 12-40 Chapter 12. EZ-USB Registers EZ-USB TRM v1.9

Bit 2-0:

The 8051 sets these bits to select an endpoint prior to setting its R or S bit. Valid values

EP

Select endpoint

are 0-7 to correspond to bulk endpoints INO-IN7 and OUTO-OUTY.

USBFRAMEL

USB Frame Count Low 7FD8
b7 b6 b5 b4 b3 b2 bl b0
FC7 FC6 FC5 FC4 FC3 FC2 FC1 FCO
R R R R R R R R
X X X X X X X X
USBFRAMEH USB Frame Count High 7FD9
b7 b6 b5 b4 b3 b2 bl b0
0 0 0 0 0 FC10 FC9 FC8
R R R R R R R R
X X X X X X X X

Figure 12-33. USB Frame Count High/Low Registers

Every millisecond the host sends a SOF token indicating “Start Of Frame,” along with an
11-bit incrementing frame count. The EZ-USB copies the frame count into these registers
at every SOF. One use of the frame count is to respond to the USB SYNC_FRAME
request (Chapter 7, "EZ-USB Endpoint Zero").

If the USB core detects a missing or garbled SOF, it generates an internal SOF and incre-
ments USBFRAMEL-USBRAMEH.

EZ-USB TRM v1.9 Chapter 12. EZ-USB Registers Page 12-41

FNADDR

Function Address

7FDB

b7

b6

b5

b4

b3

b2

bl

b0

FAG6

FAS5

FA4

FA3

FA2

FA1l

FAO

R

R

R

R

X

X

X

X

Figure 12-34. Function Address Register

During the USB enumeration process, the host sends a device a unique 7-bit address,
which the EZ-USB core copies into this register. There is normally no reason for the CPU
to know its USB device address because the USB Core automatically responds only to its
assigned address.

Note

During ReNumeratiol the USB Core sets register to O to allow the EZ-USB chip t
respond to the default address 0.

Page 12-42 Chapter 12. EZ-USB Registers EZ-USB TRM v1.9

USBPAIR USB Endpoint Pairing 7FDD
b7 b6 b5 ba b3 b2 b1 bo
ISOSENDO PR60OUT | PR4OUT | PR20UT PR6IN PRA4IN PR2IN
R/W R/W R/W R/W R/W R/W R/W R/W
0 X 0 0 0 0 0 0
Figure 12-35. USB Endpoint Pairing Register
Bit 7: ISOSENDO Isochronous Send Zero Length Data Packet

The ISOSENDO bit is used when the EZ-USB chip receives an isochronous IN token
while the IN FIFO is empty. If ISOSENDO=0 (the default value), the EZ-USB core does
not respond to the IN token. If ISOSENDO=1, the EZ-USB core sends a zero-length data
packet in response to the IN token. Which action to take depends on the overall system
design. The ISOSENDO bit applies to all of the isochronous IN endpoints, INSBUF
through IN15BUF.

Bit 5-3: PRnNOUT Pair Bulk OUT Endpoints

Set the endpoint pairing bits (PRxOUT) to “1” to enable double-buffering of the bulk

OUT endpoint buffers. With double buffering enabled, the 8051 can operate on one buffer
while another is being transferred over USB. The endpoint busy and interrupt request bits
function identically, so the 8051 code requires no code modification to support double

buffering.

When an endpoint is paired, the 8051 uses only the even-numbered endpoint of the pair.
The 8051 should not use the paired odd endpoint’'s IRQ, IEN, VALID bits or the buffer
associated with the odd numbered endpoint.

Bit 2-0: PRnIN Pair Bulk IN Endpoints
Set the endpoint pairing bits (PRxIN) to “1” to enable double-buffering of the bulk IN
endpoint buffers. With double buffering enabled, the 8051 can operate on one buffer

while another is being transferred over USB.

When an endpoint is paired, the 8051 should access only the even-numbered endpoint of
the pair. The 8051 should not use the IRQ, IEN, VALID bits or the buffer associated with
the odd numbered endpoint.

EZ-USB TRM v1.9 Chapter 12. EZ-USB Registers Page 12-43

INO7VAL

Endpoints 0-7 IN Valid Bits 7FDE
b7 b6 b5 b4 b3 b2 bl b0
IN7VAL IN6VAL INSVAL IN4VAL IN3VAL IN2VAL INLIVAL INOVAL
R/W R/W R/W R/W R/W R/W R/W R/W
0 1 0 1 0 1 1 1
OUTO7VAL Endpoints 0-7 OUT Valid Bits 7FDF
b7 b6 b5 b4 b3 b2 bl b0
OUT7VAL | OUT6VAL | OUT5VAL | OUT4VAL | OUT3VAL | OUT2VAL | OUTIVAL | OUTOVAL
R/W R/W R/W R/W R/W R/W R/W R/W
0 1 0 1 0 1 0 1

The 8051 sets VAL=1 for any active endpoints, and VAL=0 for inactive endpoints. These
bits instruct the EZ-USB core to return a “no response” if an invalid endpoint is addressed,

instead of a NAK.

The default values of these registers are set to support all endpoints that exist in the default

Figure 12-36. IN/OUT Valid Bits Register

USB device (see Table 5-1).

Page 12-44

Chapter 12. EZ-USB Registers

EZ-USB TRM v1.9

INISOVAL

Isochronous IN Endpoint Valid Bits 7FEO
b7 b6 b5 b4 b3 b2 bl b0
IN1SVAL IN14VAL IN13VAL IN12VAL IN11VAL IN1OVAL INOVAL IN8VAL
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 1 1 1
OUTISOVAL Isochronous OUT Endpoint Valid Bits 7FE1
b7 b6 b5 b4 b3 b2 bl b0
OUTI15VAL | OUT14VAL | OUT13VAL | OUT12VAL | OUT11VAL | OUT10VAL | OUT9VAL | OUT8VAL
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 1 1 1

Figure 12-37. Isochronous IN/OUT Endpoint Valid Bits Register

The 8051 sets VAL=1 for active endpoints, and VAL=0 for inactive endpoints. These bits
instruct the EZ-USB core to return a “no response” if an invalid endpoint is addressed.

The default values of these registers are set to support all endpoints that exist in the default
USB device (see Table 5-1).

EZ-USB TRM v1.9 Chapter 12. EZ-USB Registers Page 12-45

12.15 Fast Transfers

FASTXFR Fast Transfer Control TFE2
b7 b6 b5 b4 b3 b2 bl b0
FISO FBLK RPOL RMOD1 RMODO WPOL WMOD1 | WMODO
R/W R/W R/W R/W R/W R/W R/W R/W
X X X X X X X X

Figure 12-38. Fast Transfer Control Register

The EZ-USB core provides a fast transfer mode that improves the8051 transfer speed
between external logic and the isochronous and bulk endpoint buffers. The FASTXFR
register enables the modes for bulk and/or isochronous transfers, and selects the timing
waveforms for the FRD# and FWR# signals.

Bit 7: FISO Enable Fast ISO Transfers
The 8051 sets FISO=1 to enable fast isochronous transfers for all16 isochronous endpoint

FIFOs. When FISO=0, fast transfers are disabled for all 16 isochronous endpoints.

Bit 6: FBLK Enable Fast BULK Transfers
The 8051 sets FBLK=1 to enable fast bulk transfers using the Autopointer (see Section
12.16, "SETUP Data") with BULK endpoints. When FBLK=0 fast transfers are disabled

for BULK endpoints.

Bit 5: RPOL FRD# Pulse Polarity

The 8051 sets RPOL=0 for active-low FRD# pulses, and RPOL=1 for active high FRD#
pulses.

Bit 4-3: RMOD FRD# Pulse Mode

These bits select the phasing and width of the FRD# pulse. See Figure 8-12.

Page 12-46 Chapter 12. EZ-USB Registers EZ-USB TRM v1.9

Bit 2: WPOL FWR# Pulse Polarity

The 8051 sets WPOL=0 for active-low FWR# pulses, and WPOL=1 for active high
FWR# pulses.

Bit 1-0: WMOD FWR# Pulse Mode

These bits select the phasing and width of the FWR# pulse. See Figure 8-11.

EZ-USB TRM v1.9 Chapter 12. EZ-USB Registers Page 12-47

AUTOPTRH Auto Pointer Address High 7FE3
b7 b6 b5 b4 b3 b2 bl b0
A15 Al4 A13 Al2 All A10 A9 A8
R/W R/W R/W R/W R/W R/W R/W R/W
X X X X X X X X
AUTOPTRL Auto Pointer Address Low 7TFE4
b7 b6 b5 b4 b3 b2 bl b0
A7 A6 A5 Ad A3 A2 Al A0
R/W R/W R/W R/W R/W R/W R/W R/W
X X X X X X X X
AUTODATA Auto Pointer Data 7FE5
b7 b6 b5 b4 b3 b2 bl b0
D7 D6 D5 D4 D3 D2 D1 DO
R/W R/W R/W R/W R/W R/W R/W R/W
X X X X X X X X

Figure 12-39. Auto Pointer Registers
These registers implement the EZ-U8Btopointer

AUTOPTRH/L

The 8051 loads a 16-bit address into the AUTOPTRHY/L registers. Subsequent reads or
writes to the AUTODATA register increment the 16-bit value in these registers. The
loaded address must be in internal EZ-USB RAM. The 8051 can read these registers to
determine the address must be in internal EZ-USB RAM. The 8051 can read these regis-
ters to determine the address of the next byte to be accessed via the AUTODATA register.

AUTODATA

8051 data read or written to the AUTODATA register accesses the memory addressed by
the AUTOPTRHI/L registers, and increments the addadiss the read or write.

These registers allow FIFO access to the bulk endpoint buffers, as well as being useful for
internal data movement. Chapter 6, "EZ-USB Bulk Transfers" and Chapter 8, "EZ-USB
Isochronous Transfers" explain how to use the Autopointer for fast transfers to and from
the EZ-USB endpoint buffers.

Page 12-48 Chapter 12. EZ-USB Registers EZ-USB TRM v1.9

12.16 SETUP Data

SETUPBUF

SETUP Data Buffer (8 Bytes)

7FE8-7TFEF

b7

b6

b5

b4

b3

b2

bl

b0

D7

D6

D5

D4

D3

D2

D1

DO

R

R

R

R

R

R

Figure 12-40. SETUP Data Buffer

This buffer contains the 8 bytes of SETUP packet data from the most recently received
CONTROL transfer.

The data in SETUPBUEF is valid when the SUDAVIR (Setup Data Available Interrupt

Request) bitis set. The 8051 responds to the SUDAV interrupt by reading the SETUP
bytes from this buffer.

EZ-USB TRM v1.9 Chapter 12. EZ-USB Registers Page 12-49

12.17 Isochronous FIFO Sizes
OUTnADDR ISO OUT Endpoint Start Address TFFO-7FF7*
b7 b6 b5 b4 b3 b2 bl b0
A9 A8 A7 A6 A5 A4 0 0
R/W R/W R/W R/W R/W R/W R/W R/W
X X X X X X X X
INNADDR ISO IN Endpoint Start Address TFF8-7FFF*
b7 b6 b5 b4 b3 b2 bl b0
A9 A8 A7 A6 A5 A4 0 0
R/W R/W R/W R/W R/W R/W R/W R/W
X X X X X X X X

* See Table 12-6 for individual start address register addresses.

Page 12-50

Figure 12-41. SETUP Data Buffer

Chapter 12. EZ-USB Registers

EZ-USB TRM v1.9

Table 12-6. Isochronous FIFO Start Address Registers

Address Endpoint Start Address
TFFO Endpoint 8 OUT Start Address
TFF1 Endpoint 9 OUT Start Address
TFF2 Endpoint 10 OUT Start Address
TFF3 Endpoint 11 OUT Start Address
TFF4 Endpoint 12 OUT Start Address
TFF5 Endpoint 13 OUT Start Address
TFF6 Endpoint 14 OUT Start Address
TFF7 Endpoint 15 OUT Start Address
TFF8 Endpoint 8 IN Start Address
TFF9 Endpoint 9 IN Start Address
TFFA Endpoint 10 IN Start Address
TFFB Endpoint 11 IN Start Address
TFFC Endpoint 12 IN Start Address
7FFD Endpoint 13 IN Start Address
TFFE Endpoint 14 IN Start Address
TFFF Endpoint 15 IN Start Address

EZ-USB Isochronous endpoints use a pool of 1,024 double-buffered FIFO bytes. The
1,024 FIFO bytes can be divided between any or all of the isochronous endpoints. The
8051 sets isochronous endpoint FIFO sizes by writing starting addresses to these registers,
starting with address 0. Address bits A3-AQ0 are internally set to zero, so the minimum
FIFO size is 16 bytes.

See Section 8.8, "Fast Transfer Speed" for details about how to set these registers.

EZ-USB TRM v1.9 Chapter 12. EZ-USB Registers Page 12-51

Page 12-52 Chapter 12. EZ-USB Registers EZ-USB TRM v1.9

13 EZ-USB AC/DC Parameters

13.1 Electrical Characteristics

13.1.1 Absolute Maximum Ratings

Storage Temperature. °Gae +150C
Ambient Temperature UnderBias °el +83C
Supply Voltage to Ground Potential -0.5V to +4.0V
DC Input Voltageto Any Pin -0.5V to +5.8V

13.1.2 Operating Conditions

Ta (Ambient Temperature Under Bias). °C b +70C
SupplyVoltage. +3.0V to +3.6V
Ground Voltage. ov
Fosc(Oscillator or Crystal Frequency) 12 MHz +/- 0.25%

13.1.3 DC Characteristics

Table 13-1. DC Characteristics

Symbol Parameter Condition Min | Typ | Max | Unit Notes
Vee Supply Voltage 3.0 3.6 \Y
Vi Input High Voltage 2 525 | V
Vi Input Low Voltage -5 8 v

I Input Leakage Current 0<V|y<Vce +10 | pA
VoH Output Voltage High lour = 1.6 MA 24 \Y
VoL Output Low Voltage loyt =-1.6 MA 8 Y
Cin Input Pin Capacitance 10 pF
lsusp Suspend Current 110 HA
lcc Supply Current 8051 running, 50 | mA

connected to USB

EZ-USB TRM v1.9 Chapter 13. EZ-USB AC/DC Parameters Page 13-1

13.1.4 AC Electrical Characteristics

Specified Conditions: Capacitive load on all pins = 30 pF

13.1.5 General Memory Timing

Table 13-2. General Memory Timing

Symbol Parameter Min | Typ | Max | Unit Notes

tCL 1/CLK24 Frequency 41.66 ns

tAV Delay from Clock to Valid Address 0 10 ns

tCD Delay from CLK24 to CS# 2 15 ns

tOED | Delay from CLK24 to OE# 2 15 ns

tWD | Delay from CLK24 to WR# 2 15 ns

tRD Delay from CLK24 to RD# 2 15 ns

tPD Delay from CLK24 to PSEN# 2 15 ns

13.1.6 Program Memory Read
Table 13-3. Program Memory Read
Symbol Parameter Formula Min Max Unit Notes
tAA1 | Address Access Time 3tCL-tAV-TDSU1 | 103 ns
tAH1 | Address Hold from CLK24 tCL+1 42 ns
tDSU1 | Data setup to CLK24 12 ns
tDH1 | Data Hold from CLK24 0 ns
13.1.7 Data Memory Read
Table 13-4. Data Memory Read
Symbol Parameter Formula Min Max Unit Notes

tAA2 | Address Access Time 3tCL-tAV-TDSUL | 103 ns
tAH2 | Address Hold from CLK24 tCL+1 42 ns
tDSU2 | Data setup to CLK24 12 ns
tDH2 | Data Hold from CLK24 0 ns

Page 13-2

Chapter 13. EZ-USB AC/DC Parameters

EZ-USB TRM v1.9

13.1.8 Data Memory Write

Table 13-5. Data Memory Write

Symbol Parameter Formula Min Max Unit Notes
tAH3 | Address Hold from CLK24 tCL+2 43 ns
tDV | CLK24 to Data Valid 15 ns
tDVZ | CLK24 to High Impedance tCL+16 57 ns
13.1.9 Fast Data Write
Table 13-6. Fast Data Write
Symbol Parameter Conditions | Min Max Unit Notes
tCDO | Clock to Data Output Delay 3 15 ns
tCWO | Clock to FIFO Write Output 2 10 ns
Delay
tPFWD | Propagation Delay Difference 1 ns
from FIFO Write to DATA Out
13.1.10 Fast Data Read
Table 13-7. Fast Data Read
Symbol Parameter Conditions | Min Max Unit Notes
tCRO | Clock to FIFO Read Output 2 10 ns
Delay
tDSU4 | Data Setup to Rising CLK24 12 ns
tDH4 | Data Hold to Rising CLK24 2 ns

EZ-USB TRM v1.9

Chapter 13. EZ-USB AC/DC Parameters

Page 13-3

T
) i B e e e N

_tAV
“——
A[15.0])
tcD : . tcD
| |
CS#
{OED {OED
B | H |
OE# !
WD ‘ WD,
> ‘G—P
WR# |
tRD RD
- b — |
RD#
| tPD tPD
B | |
PSEN#

Figure 13-1. External Memory Timing

0 I N]

OE#

N e—— tDSUL —»e— tDHl—J

Figure 13-2. Program Memory Read Timing

Page 13-4 Chapter 13. EZ-USB AC/DC Parameters EZ-USB TRM v1.9

cLiaa | _[_,—‘
RD#
CS#
OE#
A[15.0] tAA2 e tam2
)
le——tDSU2—»<— tDH2 —J
D[7.0]

Figure 13-3. Data Memory Read Timing

L]

s [T

CS#

WR#

«— tAH3 —»

A[15.0] >< ><

«— tDV —» «— thVZ

D[7.0]

Figure 13-4. Data Memory Write Timing

EZ-USB TRM v1.9 Chapter 13. EZ-USB AC/DC Parameters Page 13-5

EZ-USB
Fast Transfer Block Diagram

EZ-USB
AN2131Q ASIC
CLK24 FIFO Clock
80 D [7:0] «§ P D [7:0]
PQFP
FWR# FIFO Write Stobe
FRD# FIFO Read Stobe

Figure 13-5. Fast Transfer Mode Block Diagram

Page 13-6 Chapter 13. EZ-USB AC/DC Parameters EZ-USB TRM v1.9

CLK24

Input

D[7..0]

FRD#[00]] \ /

Figure 13-6. Fast Transfer Read Timing [Mode 00]

CLK24

ktCDO%

D[7.0] __| Output

—p tCWO —p tCWO

FWR#[00]

Figure 13-7. Fast Transfer Write Timing [Mode 00]

EZ-USB TRM v1.9 Chapter 13. EZ-USB AC/DC Parameters

Page 13-7

CLK24

D[7..0]

FRD#[01]

CLK24

D[7..0]

FWR#[01]

Page 13-8

FtDSU4+

IR

<tCRO ﬂ

tDH4
<—

Input

Figure 13-8. Fast Transfer Read Timing [Mode 01]

ktho%

l_1CDO_,

Output

tCWO }4*

tCWO |€4—

Figure 13-9. Fast Transfer Write Timing [MODE 01]

Chapter 13. EZ-USB AC/DC Parameters

tPFWD

EZ-USB TRM v1.9

CLK24

tDH4
FtDSU4» ’

Input
D[7..0] b

<tCRO ﬂ

FRD#10] | \

Figure 13-10. Fast Transfer Read Timing [Mode 10]

CLK24

ktCDO% ktho%

D[7.0] — Output

—» tCWO F— —» tCWO F—

FWR#[10] \ /

Figure 13-11. Fast Transfer Write Timing [Mode 10]

EZ-USB TRM v1.9 Chapter 13. EZ-USB AC/DC Parameters Page 13-9

CLK24

D[7..0]

FRD#[11]

CLK24

D[7..0]

FWR#[11]

Page 13-10

%tDSU4»

tDH4
o

Input

‘tCROﬂ

Figure 13-12. Fast Transfer Read Timing [Mode 11]

ktCDO%

1CDO_|

Output

—p| ICWO |¢—

tCWO

Figure 13-13. Fast Transfer Write Timing [Mode 11]

Chapter 13. EZ-USB AC/DC Parameters

tPFWD

EZ-USB TRM v1.9

14 EZ-USB Packaging

14.1 44-Pin PQFP Package

13.45
12.95

10.10
9.90

+«—8.00 REF ———»

A

A

44 34

IHHHHAHHAH
©

33

[y

AHHHAHHAA A

0.80 BSC.

|

23

ililililik

I

il

11

ahlilb kLl

22

Figure 14-1. 44-Pin PQFP Package (Top View)

See Lead Detail

[
2.35 MAX \—L

0.45
0.30

Figure 14-2. 44-Pin PQFP Package (Side View)

EZ-USB TRM v1.9 Chapter 14. EZ-USB Packaging Page 14-1

U

«———

1.60 TYP

+—>

Lead Detail: A(S=N/S)

Figure 14-3. 44-Pin PQFP Package (Detail View)

Page 14-2 Chapter 14. EZ-USB Packaging EZ-USB TRM v1.9

14.2 80-Pin PQFP Package

24.10 I
23.70
| 20.05)
19.95
0.80 > |
64
HHHHH}HHHHHHHHHHHHHHHHHH
I GSE 2 §40
[—— MY E—
aos 34 tj @ — 0.80BSC.
18.10 : = 30 0
170 135 = BOPQFP —
ME ’ - =, 1

[
»

(LLLRGERUELRRRRLRGL

1

——]

1.00 Ref

Figure 14-4. 80-Pin PQFP Package (Top View)

v

3.04 MAX

See Lead
Detail

Figure 14-5. 80-Pin PQFP Package (Side View)

EZ-USB TRM v1.9 Chapter 14. EZ-USB Packaging Page 14-3

8 Places
PR

12° REF.

—}—f— 0°~10°

2.76
2.66
1

Base Plane *‘ ! l l\
Seating Plane J 0.28 j T

—* +— 0.25 Gage Plane

1.95+0.15
B

Detail "A"

Figure 14-6. 80-Pin PQFP Package (Detail View)

Page 14-4 Chapter 14. EZ-USB Packaging EZ-USB TRM v1.9

14.3 48-Pin TQFP Package

See Lead
L Detall

e

T

0.27

e
0.17

ALL DIMENSIONS IN MILLIMETERS.

Figure 14-7. 48-Pin TQFP Package (Side View)

1R1RRRRAAARE| |
= ¢ =
% 48 TQFP %"BSC-
= =
LLLRLELLLET

ALL DIMENSIONS IN MILLIMETERS.

Figure 14-8. 48-Pin TQFP Package (Top View)

EZ-USB TRM v1.9 Chapter 14. EZ-USB Packaging Page 14-5

—=—— 0.25 Gauge Plane

Base Plane |

Seating Plane .

(g —

F—»

1.00 REF.

ALL DIMENSIONS IN MILLIMETERS.

48-Pin Lead Detalil

Figure 14-9. 48-Pin TQFP Package (Detail View)

Page 14-6 Chapter 14. EZ-USB Packaging EZ-USB TRM v1.9

EZ-USB v 1.9 Appendices

Table of Contents

Appendix A: 8051 Introduction.

AN R 1o 1 o To [T 1 0] o [PPSR
A2 BOS5LFEAIUIES ...coeniiiiiieee e et
A.3 Performance OVEIVIEWccooeeieeieiiiiiiieeeeieiiiieeeeeeaenans
A.4 Software Compatibilityccceeiieiiiiiiii
A.5 803x/805x Feature Comparisoncccceevvvvvvvnennianenenns
A.6 8051 Core/DS80C320 Differencesccccoeeeeeeereevvvnnnnnn.
A.B6.1 Serial POMSovciiiiiiiieiei e
AB.2 TIMEI 2 .o
A.6.3 Timed Access Protectioncccoeevvvveeeeeeniieeiviieeeennn.
A.6.4 Watchdog TIMErcueviiiiiiiiiieiiiiiiieeeee e

Appendix B: 8051 Architectural Overview.

B.1 INtrOdUCHIONuviiiiiiiiiiiiii e
B.1.1 Memory Organizationccccvveverieiiieiiiinieneenenn
B.1.1.1 Program MemoOrycccooiiiiieiiimmiiieneeeennn
B.1.1.2 External RAMccoiiiiiiiiiiiiieeeeeeee e
B.1.1.3 Internal RAM ..o
B.1.2 INSIrUCHON Seluvviiiiiiiiiiiiiieieeee e
B.1.3 INStruction TiMINGceeeveiiiiiieianiniiiiiiieieieeneee
B.1.4 CPU TIMING .eevvviiiiiiiiiieieieee e
B.1.5 Stretch Memory Cycles (Wait States)
B.1.6 Dual Data POINErScuvvieiiiiieiieeeiiiieiicininiee
B.1.7 Special Function Registerscccccvveviviiiiveninennnn.

Appendix C: 8051 Hardware Description

(@ I '] (o Yo [U 1o 170
C.2 TIMErS/COUNIEIS ..covvnieiii e ee e
C.2.1 803x/805x Compatibilityccccceeviviiiiiiiiiiiiniiiene
C.2.2 Timers0andloooiiiiiiiiiiiieceee e
C.2.3 MOUE O e e
C.2.4 MOUE L ..o e
C.25 MOUE 2 ..o e
O I 1Y/ o o [T
C.2.7 Timer Rate Controlccoeevveieiiiiiiieiieieeeee e,

EZ-USB TRM v1.9 Table of Contents

EZ-USB Registers

Addr Name Description D7 D6 D5 D4 D3 D2 D1 DO Notes
Endpoint 0-7 Data Buffers CPU Access Codes:
7B40 OUT7BUF (64 bytes) d7 dé d5 d4 d3 d2 di do RW = Read or Write,
7B80 IN7BUF (64 bytes) d7 dé d5 d4 d3 d2 di do R, r =read-only,
7BCO OUT6BUF (64 bytes) d7 dé d5 d4 d3 d2 di do W, w = write-only
7C00 IN6BUF (64 bytes) d7 d6 d5 d4 d3 d2 d1 do b = both (Read & Write)
7C40 OUTS5BUF (64 bytes) d7 dé d5 d4 d3 d2 di do
7C80 INSBUF (64 bytes) d7 dé d5 d4 d3 d2 di do
7CCo OUT4BUF (64 bytes) d7 dé d5 d4 d3 d2 di do
7D00 INABUF (64 bytes) d7 dé d5 d4 d3 d2 di do
7D40 OUT3BUF (64 bytes) d7 dé d5 d4 d3 d2 di do
7D80 IN3BUF (64 bytes) d7 dé d5 d4 d3 d2 di do
7DCO OUT2BUF (64 bytes) d7 dé d5 d4 d3 d2 di do
7E00 IN2BUF (64 bytes) d7 dé d5 d4 d3 d2 di do
7E40 OUT1BUF (64 bytes) d7 dé d5 d4 d3 d2 di do
7E80 IN1IBUF (64 bytes) d7 dé d5 d4 d3 d2 di do
7ECO OUTOBUF (64 bytes) d7 dé d5 d4 d3 d2 di do
7F00 INOBUF (64 bytes) d7 dé d5 d4 d3 d2 di do
7F40-7F5F (reserved)
Isochronous Data
7F60 OUT8DATA Endpoint 8 OUT Data d7 dé d5 d4 d3 d2 di do
7F61 OUT9DATA Endpoint 9 OUT Data d7 dé d5 d4 d3 d2 di do
7F62 OUT10DATA Endpoint 10 OUT Data d7 dé d5 d4 d3 d2 di do
7F63 OUT11DATA Endpoint 11 OUT Data d7 dé d5 d4 d3 d2 di do
7F64 OUT12DATA Endpoint 12 OUT Data d7 dé d5 d4 d3 d2 di do
7F65 OUT13DATA Endpoint 13 OUT Data d7 dé d5 d4 d3 d2 di do
7F66 OUT14DATA Endpoint 14 OUT Data d7 dé d5 d4 d3 d2 di do
7F67 OUT15DATA Endpoint 15 OUT Data d7 dé d5 d4 d3 d2 di do
7F68 INBDATA Endpoint 8 IN Data d7 dé d5 d4 d3 d2 di do
7F69 INODATA Endpoint 9 IN Data d7 dé d5 d4 d3 d2 di do
TF6A IN1IODATA Endpoint 10 IN Data d7 dé d5 d4 d3 d2 di do
7F6B IN11DATA Endpoint 11 IN Data d7 dé d5 d4 d3 d2 di do
7F6C IN12DATA Endpoint 12 IN Data d7 dé d5 d4 d3 d2 di do
7F6D IN13DATA Endpoint 13 IN Data d7 dé d5 d4 d3 d2 di do
7F6E IN14DATA Endpoint 14 IN Data d7 dé d5 d4 d3 d2 di do
7F6F IN15DATA Endpoint 15 IN Data d7 dé d5 d4 d3 d2 dl do

EZ-USB TRM v 1.9

EZ-USB Registers

Page 1

EZ-USB Registers

Addr Name Description D7 D6 D5 D4 D3 D2 D1 DO Notes
Endpoint 0-7 Data Buffers CPU Access Codes:
7B40 OUT7BUF (64 bytes) d7 dé d5 d4 d3 d2 di do RW = Read or Write,
7B80 IN7BUF (64 bytes) d7 dé d5 d4 d3 d2 di do R, r =read-only,
7BCO OUT6BUF (64 bytes) d7 dé d5 d4 d3 d2 di do W, w = write-only
7C00 IN6BUF (64 bytes) d7 d6 d5 d4 d3 d2 d1 do b = both (Read & Write)
7C40 OUTS5BUF (64 bytes) d7 dé d5 d4 d3 d2 di do
7C80 INSBUF (64 bytes) d7 dé d5 d4 d3 d2 di do
7CCo OUT4BUF (64 bytes) d7 dé d5 d4 d3 d2 di do
7D00 INABUF (64 bytes) d7 dé d5 d4 d3 d2 di do
7D40 OUT3BUF (64 bytes) d7 dé d5 d4 d3 d2 di do
7D80 IN3BUF (64 bytes) d7 dé d5 d4 d3 d2 di do
7DCO OUT2BUF (64 bytes) d7 dé d5 d4 d3 d2 di do
7E00 IN2BUF (64 bytes) d7 dé d5 d4 d3 d2 di do
7E40 OUT1BUF (64 bytes) d7 dé d5 d4 d3 d2 di do
7E80 IN1IBUF (64 bytes) d7 dé d5 d4 d3 d2 di do
7ECO OUTOBUF (64 bytes) d7 dé d5 d4 d3 d2 di do
7F00 INOBUF (64 bytes) d7 dé d5 d4 d3 d2 di do
7F40-7F5F (reserved)
Isochronous Data
7F60 OUT8DATA Endpoint 8 OUT Data d7 dé d5 d4 d3 d2 di do
7F61 OUT9DATA Endpoint 9 OUT Data d7 dé d5 d4 d3 d2 di do
7F62 OUT10DATA Endpoint 10 OUT Data d7 dé d5 d4 d3 d2 di do
7F63 OUT11DATA Endpoint 11 OUT Data d7 dé d5 d4 d3 d2 di do
7F64 OUT12DATA Endpoint 12 OUT Data d7 dé d5 d4 d3 d2 di do
7F65 OUT13DATA Endpoint 13 OUT Data d7 dé d5 d4 d3 d2 di do
7F66 OUT14DATA Endpoint 14 OUT Data d7 dé d5 d4 d3 d2 di do
7F67 OUT15DATA Endpoint 15 OUT Data d7 dé d5 d4 d3 d2 di do
7F68 INBDATA Endpoint 8 IN Data d7 dé d5 d4 d3 d2 di do
7F69 INODATA Endpoint 9 IN Data d7 dé d5 d4 d3 d2 di do
TF6A IN1IODATA Endpoint 10 IN Data d7 dé d5 d4 d3 d2 di do
7F6B IN11DATA Endpoint 11 IN Data d7 dé d5 d4 d3 d2 di do
7F6C IN12DATA Endpoint 12 IN Data d7 dé d5 d4 d3 d2 di do
7F6D IN13DATA Endpoint 13 IN Data d7 dé d5 d4 d3 d2 di do
7F6E IN14DATA Endpoint 14 IN Data d7 dé d5 d4 d3 d2 di do
7F6F IN15DATA Endpoint 15 IN Data d7 dé d5 d4 d3 d2 dl do

EZ-USB TRM v 1.9

EZ-USB Registers

Page 1

EZ-USB Registers

Addr Name Description D7 D6 D5 D4 D3 D2 D1 DO Notes
Isochronous Byte Counts
7F70 OUT8BCH EP8 Out Byte Count H 0 0 0 0 0 0 d9 d8
7F71 OUT8BCL EP8 Out Byte Count L d7 dé d5 d4 d3 d2 di do
TF72 OUT9BCH EP9 Out Byte Count H 0 0 0 0 0 0 do d8
7F73 OUT9BCL EP9 Out Byte Count L d7 dé d5 d4 d3 d2 di do
TF74 OUT10BCH EP10 Out Byte Count H 0 0 0 0 0 0 d9 d8
7F75 OuUT10BCL EP10 Out Byte Count L d7 dé d5 d4 d3 d2 di do
7F76 OUT11BCH EP11 Out Byte Count H 0 0 0 0 0 0 do d8
TF77 OUT11BCL EP11 Out Byte Count L d7 dé d5 d4 d3 d2 di do
7F78 OUT12BCH EP12 Out Byte Count H 0 0 0 0 0 0 do d8
7F79 OUT12BCL EP12 Out Byte Count L d7 dé d5 d4 d3 d2 di do
TF7A OUT13BCH EP13 Out Byte Count H 0 0 0 0 0 0 do d8
7F7B OUT13BCL EP13 Out Byte Count L d7 dé d5 d4 d3 d2 di do
7F7C OUT14BCH EP14 Out Byte Count H 0 0 0 0 0 0 do d8
7F7D OUT14BCL EP14 Out Byte Count L d7 dé d5 d4 d3 d2 di do
TF7E OUT15BCH EP15 Out Byte Count H 0 0 0 0 0 0 do d8
TF7F OUT15BCL EP15 Out Byte Count L d7 dé d5 d4 d3 d2 di do
7F80-7F91 (reserved)
CPU Registers
7F92 CPUCS Control & Status n3 n2 vl no 0 0 CLK240E 8051RES rv{3..0] = chip rev
7F93 PORTACFG Port A Configuration RxDlout RxDOout FRD FWR CS OE Tlout TOout O=port, 1=alt function
7F94 PORTBCFG Port B Configuration T20UT INT6 INTS INT4 TxD1 RxD1 T2EX T2 O=port, 1=alt function
7F95 PORTCCFG Port C Configuration RD WR T1 TO INTL INTO TXDO RxDO O=port, 1=alt function
Input-Output Port Registers
7F96 OUTA Output Register A OUTA7 OUTA6 OUTAS OUTA4 OUTA3 OUTA2 OUTAL OUTAO
7F97 ouTB Output Register B ouTB7 OuUTB6 OuUTB5 ouTB4 OuUTB3 ouTB2 OouTB1 OouTBO
7F98 OuTC Output Register C OUTC7 OUTC6 OUTC5 OUTC4 OUTC3 ouTC2 OUTC1 OUTCO
7F99 PINSA Port Pins A PINA7 PINA6 PINA5S PINA4 PINA3 PINA2 PINA1 PINAO
TF9A PINSB Port Pins B PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINBO
7F9B PINSC Port Pins C PINC7 PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINCO
7F9C OEA Output Enable A OEA7 OEA6 OEAS5 OEA4 OEA3 OEA2 OEAl OEAQ 0=off, 1=drive
7F9D OEB Output Enable B OEB7 OEB6 OEB5 OEB4 OEB3 OEB2 OEB1 OEBO 0=off, 1=drive
7TF9E OEC Output Enable C OEC7 OEC6 OEC5 OEC4 OEC3 OEC2 OEC1 OECO 0=off, 1=drive
TF9F UART230 230Kbaud support 0 0 0 0 0 0 UARTL UARTO 1 = 230Kbaud rate
Isochronous Control/Status Registers
7FAO ISOERR ISO OUT Endpoint Error ISO15ERR ISO14ERR ISO13ERR ISO12ERR ISO11ERR ISO10ERR | ISO9ERR ISO8ERR
7TFA1 ISOCTL Isochronous Control * * * * PPSTAT MBZ MBZ ISODISAB "MBZ" = Must Be Zero
TFA2 ZBCOUT Zero Byte Count bits EP15 EP14 EP13 EP12 EP11 EP10 EP9 EP8
7FA3 (reserved)
TFA4 (reserved)
1’c Registers
TFAS 12CSs Control & Status START STOP LASTRD ID1 IDO BERR ACK DONE
TFA6 I2DAT Data d7 dé d5 d4 d3 d2 di do
TEAT 12CMODE 12C STOP interrupt enable 0 0 0 0 0 0 STOPIE 0 1=Enable INT3 on STOP

EZ-USB TRM v 1.9

EZ-USB Registers

Page 2

EZ-USB Registers

Addr Name Description D7 D6 D5 D4 D3 D2 D1 DO Notes
Interrupts
TFA8 IVEC Interrupt Vector 0 V4 V3 V2 V1 [\l 0 0
7FA9 INO7IRQ EPIN Interrupt Request IN7IR IN6IR INSIR IN4IR IN3IR IN2IR IN1IR INOIR 1=request
TFAA OUTO7IRQ EPOUT Interrupt Request OUT7IR OUT6IR OUTSIR OUT4IR OUT3IR OUT2IR OUTILIR OUTOIR 1=request
7FAB USBIRQ USB Interrupt Request * * IBNIR URESIR SUSPIR SUTOKIR SOFIR SUDAVIR 1=request
7FAC INO7IEN EPO-7IN Int Enables IN7IEN INGIEN INSIEN IN4IEN IN3IEN IN2IEN INLIEN INOIEN 1=enabled
7FAD OUTO7IEN EPO-70UT Int Enables OUTY7IEN OUTB6IEN OUTSIEN OUT4IEN OUTS3IEN OUT2IEN OUTLIEN OUTOIEN 1=enabled
7FAE USBIEN USB Int Enables * * IBNIE URESIE SUSPIE SUTOKIE SOFIE SUDAVIE 1=enabled
TFAF USBBAV Breakpoint & Autovector * * * * BREAK BPPULSE BPEN AVEN 1=enabled
7FBO IBNIRQ IBN Interrupt request EPGIN EPSIN EP4IN EP3IN EP2IN EP1IN EPOIN 1=request
7FB1 IBNIE IBN Interrupt Enable EPG6IN EPSIN EP4IN EP3IN EP2IN EP1IN EPOIN 1=enabled
7FB2 BPADDRH Breakpoint Address H Al5 Al4 Al13 Al12 All Al10 A9 A8
7FB3 BPADDRL Breakpoint Address L A7 A6 A5 A4 A3 A2 Al A0
Bulk Endpoints 0-7
7FB4 EPOCS Control & Status * * * * OUTBSY INBSY HSNAK EPOSTALL For EPOIN and EPOOUT
7FB5 INOBC Byte Count * dé d5 d4 d3 d2 di do * this bits are random
7FB6 IN1CS Control & Status * * * * * * inlbsy inlstl at power-on. Once
7FB7 IN1BC Byte Count * dé d5 d4 d3 d2 di do operational, these bits
7FB8 IN2CS Control & Status * * * * * * in2bsy in2stl read as zeros.
7FB9 IN2BC Byte Count * dé d5 d4 d3 d2 di do
7FBA IN3CS Control & Status * * * * * * in3bsy in3stl
7FBB IN3BC Byte Count * dé d5 d4 d3 d2 di do
7FBC INACS Control & Status * * * * * * in4bsy in4stl
7FBD IN4ABC Byte Count * dé d5 d4 d3 d2 di do
7FBE IN5CS Control & Status * * * * * * in5bsy in5stl
7FBF INSBC Byte Count * dé d5 d4 d3 d2 di do
7FCO IN6CS Control & Status * * * * * * in6bsy in6stl
7FC1 IN6BC Byte Count * dé d5 d4 d3 d2 di do
7FC2 IN7CS Control & Status * * * * * * in7bsy in7stl
7FC3 IN7BC Byte Count * dé d5 d4 d3 d2 di do
7FC4 (reserved)
7FC5 OuUTOBC Byte Count * dé d5 d4 d3 d2 di do
7FC6 OouT1CS Control & Status * * * * * * outlbsy outlstl
TFC7 OUT1BC Byte Count * dé d5 d4 d3 d2 di do
7FC8 ouT2CSs Control & Status * * * * * * out2bsy out2stl
7FC9 OuUT2BC Byte Count * dé d5 d4 d3 d2 di do
7FCA OuUT3CS Control & Status * * * * * * out3bsy out3stl
7FCB OUT3BC Byte Count * dé d5 d4 d3 d2 di do
7FCC OUT4CS Control & Status * * * * * * out4bsy out4stl
7FCD QOuU4TBC Byte Count * dé d5 d4 d3 d2 di do
7FCE OUT5CS Control & Status * * * * * * out5bsy out5stl
7FCF OUT5BC Byte Count * dé d5 d4 d3 d2 di do
7FDO OouT6eCS Control & Status * * * * * * out6bsy out6stl
7FD1 OouTeBC Byte Count * dé d5 d4 d3 d2 di do
7FD2 OouT7CS Control & Status * * * * * * out7bsy out7stl
7FD3 OUT7BC Byte Count * dé d5 d4 d3 d2 dl do

EZ-USB TRM v 1.9

EZ-USB Registers

Page 3

EZ-USB Registers

Addr Name Description D7 D6 D5 D4 D3 D2 D1 DO Notes
Global USB Registers
7FD4 SUDPTRH Setup Data Ptr H Al15 Al4 Al13 Al12 All Al10 A9 A8
7FD5 SUDPTRL Setup Data Ptr L A7 A6 A5 A4 A3 A2 Al A0
7FD6 USBCS USB Control & Status WakeSRC * * * DisCon DiscOE ReNum SIGRSUME Clear b7 by writing "1"
7FD7 TOGCTL Toggle Control Q S R 10 0 EP2 EP1 EPO
7FD8 USBFRAMEL Frame Number L FC7 FC6 FC5 FC4 FC3 FC2 FC1 FCO
7FD9 USBFRAMEH Frame Number H 0 0 0 0 0 FC10 FC9 FC8
7FDA (reserved)
7FDB FNADDR Function Address 0 FA6 FAS5 FA4 FA3 FA2 FAL FAO
7FDC (reserved)
7FDD USBPAIR Endpoint Control 1ISOsend0 * PR60OUT PR40OUT PR20OUT PR6IN PR4IN PR2IN PRx =1 to pair EP
7FDE INO7VAL Input Endpoint 0-7 valid IN7VAL IN6VAL INSVAL IN4VAL IN3VAL IN2VAL INIVAL 1 VAL =1 means valid
7FDF OUTO7VAL Output Endpoint 0-7 valid OUT7VAL OUT6VAL OUT5VAL OUT4VAL OUT3VAL OUT2VAL OUT1VAL 1 VAL =1 means valid
7FEO INISOVAL Input EP 8-15 valid IN15VAL IN14VAL IN13VAL IN12VAL IN11VAL IN1OVAL INOVAL INBVAL VAL =1 means valid
7FE1 OUTISOVAL Output EP 8-15 valid OUTI15VAL | OUT14VAL | OUT13VAL | OUT12VAL | OUT11VAL | OUTIOVAL | OUT9VAL OUT8VAL VAL =1 means valid
7FE2 FASTXFR Fast Transfer Mode FISO FBLK RPOL RMOD1 RMODO WPOL WMOD1 WMODO
7FE3 AUTOPTRH Auto-Pointer H Al5 Al4 Al13 Al12 All Al10 A9 A8
7FE4 AUTOPTRL Auto-Pointer L A7 A6 A5 A4 A3 A2 Al A0
7FES5 AUTODATA Auto Pointer Data D7 D6 D5 D4 D3 D2 D1 DO
7FE6 (reserved)
TFE7 (reserved)
Setup Data
7FE8 SETUPDAT 8 bytes of SETUP data d7 dé d5 d4 d3 d2 di do
Isochronous FIFO Sizes
7FFO OUTBADDR Endpt 8 OUT Start Addr A9 A8 A7 A6 A5 A4 0 0
7FF1 OUT9ADDR Endpt 9 OUT Start Addr A9 A8 A7 A6 A5 A4 0 0
TFF2 OUT10ADDR Endpt 10 OUT Start Addr A9 A8 A7 A6 A5 A4 0 0
7FF3 OUT11ADDR Endpt 11 OUT Start Addr A9 A8 A7 A6 A5 A4 0 0
7FF4 OUT12ADDR Endpt 12 OUT Start Addr A9 A8 A7 A6 A5 A4 0 0
7FF5 OUT13ADDR Endpt 13 OUT Start Addr A9 A8 A7 A6 A5 A4 0 0
7FF6 OUT14ADDR Endpt 14 OUT Start Addr A9 A8 A7 A6 A5 A4 0 0
TFF7 OUT15ADDR Endpt 15 OUT Start Addr A9 A8 A7 A6 A5 A4 0 0
7FF8 INBADDR Endpt 8 IN Start Addr A9 A8 A7 A6 A5 A4 0 0
7FF9 INSADDR Endpt 9 IN Start Addr A9 A8 A7 A6 A5 A4 0 0
TFFA IN1SADDR Endpt 10 IN Start Addr A9 A8 A7 A6 A5 A4 0 0
7FFB IN11ADDR Endpt 11 IN Start Addr A9 A8 A7 A6 A5 A4 0 0
7FFC IN12ADDR Endpt 12 IN Start Addr A9 A8 A7 A6 A5 A4 0 0
7FFD IN13ADDR Endpt 13 IN Start Addr A9 A8 A7 A6 A5 A4 0 0
7FFE IN14ADDR Endpt 14 IN Start Addr A9 A8 A7 A6 A5 A4 0 0
7FFF IN15ADDR Endpt 15 IN Start Addr A9 A8 A7 A6 A5 A4 0 0

EZ-USB TRM v 1.9

EZ-USB Registers

Page 4

EZ-USB Registers

Addr Name Description D7 D6 D5 D4 D3 D2 D1 DO Notes
Isochronous Byte Counts
7F70 OUT8BCH EP8 Out Byte Count H 0 0 0 0 0 0 d9 d8
7F71 OUT8BCL EP8 Out Byte Count L d7 dé d5 d4 d3 d2 di do
TF72 OUT9BCH EP9 Out Byte Count H 0 0 0 0 0 0 do d8
7F73 OUT9BCL EP9 Out Byte Count L d7 dé d5 d4 d3 d2 di do
TF74 OUT10BCH EP10 Out Byte Count H 0 0 0 0 0 0 d9 d8
7F75 OuUT10BCL EP10 Out Byte Count L d7 dé d5 d4 d3 d2 di do
7F76 OUT11BCH EP11 Out Byte Count H 0 0 0 0 0 0 do d8
TF77 OUT11BCL EP11 Out Byte Count L d7 dé d5 d4 d3 d2 di do
7F78 OUT12BCH EP12 Out Byte Count H 0 0 0 0 0 0 do d8
7F79 OUT12BCL EP12 Out Byte Count L d7 dé d5 d4 d3 d2 di do
TF7A OUT13BCH EP13 Out Byte Count H 0 0 0 0 0 0 do d8
7F7B OUT13BCL EP13 Out Byte Count L d7 dé d5 d4 d3 d2 di do
7F7C OUT14BCH EP14 Out Byte Count H 0 0 0 0 0 0 do d8
7F7D OUT14BCL EP14 Out Byte Count L d7 dé d5 d4 d3 d2 di do
TF7E OUT15BCH EP15 Out Byte Count H 0 0 0 0 0 0 do d8
TF7F OUT15BCL EP15 Out Byte Count L d7 dé d5 d4 d3 d2 di do
7F80-7F91 (reserved)
CPU Registers
7F92 CPUCS Control & Status n3 n2 vl no 0 0 CLK240E 8051RES rv{3..0] = chip rev
7F93 PORTACFG Port A Configuration RxDlout RxDOout FRD FWR CS OE Tlout TOout O=port, 1=alt function
7F94 PORTBCFG Port B Configuration T20UT INT6 INTS INT4 TxD1 RxD1 T2EX T2 O=port, 1=alt function
7F95 PORTCCFG Port C Configuration RD WR T1 TO INTL INTO TXDO RxDO O=port, 1=alt function
Input-Output Port Registers
7F96 OUTA Output Register A OUTA7 OUTA6 OUTAS OUTA4 OUTA3 OUTA2 OUTAL OUTAO
7F97 ouTB Output Register B ouTB7 OuUTB6 OuUTB5 ouTB4 OuUTB3 ouTB2 OouTB1 OouTBO
7F98 OuTC Output Register C OUTC7 OUTC6 OUTC5 OUTC4 OUTC3 ouTC2 OUTC1 OUTCO
7F99 PINSA Port Pins A PINA7 PINA6 PINA5S PINA4 PINA3 PINA2 PINA1 PINAO
TF9A PINSB Port Pins B PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINBO
7F9B PINSC Port Pins C PINC7 PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINCO
7F9C OEA Output Enable A OEA7 OEA6 OEAS5 OEA4 OEA3 OEA2 OEAl OEAQ 0=off, 1=drive
7F9D OEB Output Enable B OEB7 OEB6 OEB5 OEB4 OEB3 OEB2 OEB1 OEBO 0=off, 1=drive
7TF9E OEC Output Enable C OEC7 OEC6 OEC5 OEC4 OEC3 OEC2 OEC1 OECO 0=off, 1=drive
TF9F UART230 230Kbaud support 0 0 0 0 0 0 UARTL UARTO 1 = 230Kbaud rate
Isochronous Control/Status Registers
7FAO ISOERR ISO OUT Endpoint Error ISO15ERR ISO14ERR ISO13ERR ISO12ERR ISO11ERR ISO10ERR | ISO9ERR ISO8ERR
7TFA1 ISOCTL Isochronous Control * * * * PPSTAT MBZ MBZ ISODISAB "MBZ" = Must Be Zero
TFA2 ZBCOUT Zero Byte Count bits EP15 EP14 EP13 EP12 EP11 EP10 EP9 EP8
7FA3 (reserved)
TFA4 (reserved)
1’c Registers
TFAS 12CSs Control & Status START STOP LASTRD ID1 IDO BERR ACK DONE
TFA6 I2DAT Data d7 dé d5 d4 d3 d2 di do
TEAT 12CMODE 12C STOP interrupt enable 0 0 0 0 0 0 STOPIE 0 1=Enable INT3 on STOP

EZ-USB TRM v 1.9

EZ-USB Registers

Page 2

EZ-USB Registers

Addr Name Description D7 D6 D5 D4 D3 D2 D1 DO Notes
Interrupts
TFA8 IVEC Interrupt Vector 0 V4 V3 V2 V1 [\l 0 0
7FA9 INO7IRQ EPIN Interrupt Request IN7IR IN6IR INSIR IN4IR IN3IR IN2IR IN1IR INOIR 1=request
TFAA OUTO7IRQ EPOUT Interrupt Request OUT7IR OUT6IR OUTSIR OUT4IR OUT3IR OUT2IR OUTILIR OUTOIR 1=request
7FAB USBIRQ USB Interrupt Request * * IBNIR URESIR SUSPIR SUTOKIR SOFIR SUDAVIR 1=request
7FAC INO7IEN EPO-7IN Int Enables IN7IEN INGIEN INSIEN IN4IEN IN3IEN IN2IEN INLIEN INOIEN 1=enabled
7FAD OUTO7IEN EPO-70UT Int Enables OUTY7IEN OUTB6IEN OUTSIEN OUT4IEN OUTS3IEN OUT2IEN OUTLIEN OUTOIEN 1=enabled
7FAE USBIEN USB Int Enables * * IBNIE URESIE SUSPIE SUTOKIE SOFIE SUDAVIE 1=enabled
TFAF USBBAV Breakpoint & Autovector * * * * BREAK BPPULSE BPEN AVEN 1=enabled
7FBO IBNIRQ IBN Interrupt request EPGIN EPSIN EP4IN EP3IN EP2IN EP1IN EPOIN 1=request
7FB1 IBNIE IBN Interrupt Enable EPG6IN EPSIN EP4IN EP3IN EP2IN EP1IN EPOIN 1=enabled
7FB2 BPADDRH Breakpoint Address H Al5 Al4 Al13 Al12 All Al10 A9 A8
7FB3 BPADDRL Breakpoint Address L A7 A6 A5 A4 A3 A2 Al A0
Bulk Endpoints 0-7
7FB4 EPOCS Control & Status * * * * OUTBSY INBSY HSNAK EPOSTALL For EPOIN and EPOOUT
7FB5 INOBC Byte Count * dé d5 d4 d3 d2 di do * this bits are random
7FB6 IN1CS Control & Status * * * * * * inlbsy inlstl at power-on. Once
7FB7 IN1BC Byte Count * dé d5 d4 d3 d2 di do operational, these bits
7FB8 IN2CS Control & Status * * * * * * in2bsy in2stl read as zeros.
7FB9 IN2BC Byte Count * dé d5 d4 d3 d2 di do
7FBA IN3CS Control & Status * * * * * * in3bsy in3stl
7FBB IN3BC Byte Count * dé d5 d4 d3 d2 di do
7FBC INACS Control & Status * * * * * * in4bsy in4stl
7FBD IN4ABC Byte Count * dé d5 d4 d3 d2 di do
7FBE IN5CS Control & Status * * * * * * in5bsy in5stl
7FBF INSBC Byte Count * dé d5 d4 d3 d2 di do
7FCO IN6CS Control & Status * * * * * * in6bsy in6stl
7FC1 IN6BC Byte Count * dé d5 d4 d3 d2 di do
7FC2 IN7CS Control & Status * * * * * * in7bsy in7stl
7FC3 IN7BC Byte Count * dé d5 d4 d3 d2 di do
7FC4 (reserved)
7FC5 OuUTOBC Byte Count * dé d5 d4 d3 d2 di do
7FC6 OouT1CS Control & Status * * * * * * outlbsy outlstl
TFC7 OUT1BC Byte Count * dé d5 d4 d3 d2 di do
7FC8 ouT2CSs Control & Status * * * * * * out2bsy out2stl
7FC9 OuUT2BC Byte Count * dé d5 d4 d3 d2 di do
7FCA OuUT3CS Control & Status * * * * * * out3bsy out3stl
7FCB OUT3BC Byte Count * dé d5 d4 d3 d2 di do
7FCC OUT4CS Control & Status * * * * * * out4bsy out4stl
7FCD QOuU4TBC Byte Count * dé d5 d4 d3 d2 di do
7FCE OUT5CS Control & Status * * * * * * out5bsy out5stl
7FCF OUT5BC Byte Count * dé d5 d4 d3 d2 di do
7FDO OouT6eCS Control & Status * * * * * * out6bsy out6stl
7FD1 OouTeBC Byte Count * dé d5 d4 d3 d2 di do
7FD2 OouT7CS Control & Status * * * * * * out7bsy out7stl
7FD3 OUT7BC Byte Count * dé d5 d4 d3 d2 dl do

EZ-USB TRM v 1.9

EZ-USB Registers

Page 3

EZ-USB Registers

Addr Name Description D7 D6 D5 D4 D3 D2 D1 DO Notes
Global USB Registers
7FD4 SUDPTRH Setup Data Ptr H Al15 Al4 Al13 Al12 All Al10 A9 A8
7FD5 SUDPTRL Setup Data Ptr L A7 A6 A5 A4 A3 A2 Al A0
7FD6 USBCS USB Control & Status WakeSRC * * * DisCon DiscOE ReNum SIGRSUME Clear b7 by writing "1"
7FD7 TOGCTL Toggle Control Q S R 10 0 EP2 EP1 EPO
7FD8 USBFRAMEL Frame Number L FC7 FC6 FC5 FC4 FC3 FC2 FC1 FCO
7FD9 USBFRAMEH Frame Number H 0 0 0 0 0 FC10 FC9 FC8
7FDA (reserved)
7FDB FNADDR Function Address 0 FA6 FAS5 FA4 FA3 FA2 FAL FAO
7FDC (reserved)
7FDD USBPAIR Endpoint Control 1ISOsend0 * PR60OUT PR40OUT PR20OUT PR6IN PR4IN PR2IN PRx =1 to pair EP
7FDE INO7VAL Input Endpoint 0-7 valid IN7VAL IN6VAL INSVAL IN4VAL IN3VAL IN2VAL INIVAL 1 VAL =1 means valid
7FDF OUTO7VAL Output Endpoint 0-7 valid OUT7VAL OUT6VAL OUT5VAL OUT4VAL OUT3VAL OUT2VAL OUT1VAL 1 VAL =1 means valid
7FEO INISOVAL Input EP 8-15 valid IN15VAL IN14VAL IN13VAL IN12VAL IN11VAL IN1OVAL INOVAL INBVAL VAL =1 means valid
7FE1 OUTISOVAL Output EP 8-15 valid OUTI15VAL | OUT14VAL | OUT13VAL | OUT12VAL | OUT11VAL | OUTIOVAL | OUT9VAL OUT8VAL VAL =1 means valid
7FE2 FASTXFR Fast Transfer Mode FISO FBLK RPOL RMOD1 RMODO WPOL WMOD1 WMODO
7FE3 AUTOPTRH Auto-Pointer H Al5 Al4 Al13 Al12 All Al10 A9 A8
7FE4 AUTOPTRL Auto-Pointer L A7 A6 A5 A4 A3 A2 Al A0
7FES5 AUTODATA Auto Pointer Data D7 D6 D5 D4 D3 D2 D1 DO
7FE6 (reserved)
TFE7 (reserved)
Setup Data
7FE8 SETUPDAT 8 bytes of SETUP data d7 dé d5 d4 d3 d2 di do
Isochronous FIFO Sizes
7FFO OUTBADDR Endpt 8 OUT Start Addr A9 A8 A7 A6 A5 A4 0 0
7FF1 OUT9ADDR Endpt 9 OUT Start Addr A9 A8 A7 A6 A5 A4 0 0
TFF2 OUT10ADDR Endpt 10 OUT Start Addr A9 A8 A7 A6 A5 A4 0 0
7FF3 OUT11ADDR Endpt 11 OUT Start Addr A9 A8 A7 A6 A5 A4 0 0
7FF4 OUT12ADDR Endpt 12 OUT Start Addr A9 A8 A7 A6 A5 A4 0 0
7FF5 OUT13ADDR Endpt 13 OUT Start Addr A9 A8 A7 A6 A5 A4 0 0
7FF6 OUT14ADDR Endpt 14 OUT Start Addr A9 A8 A7 A6 A5 A4 0 0
TFF7 OUT15ADDR Endpt 15 OUT Start Addr A9 A8 A7 A6 A5 A4 0 0
7FF8 INBADDR Endpt 8 IN Start Addr A9 A8 A7 A6 A5 A4 0 0
7FF9 INSADDR Endpt 9 IN Start Addr A9 A8 A7 A6 A5 A4 0 0
TFFA IN1SADDR Endpt 10 IN Start Addr A9 A8 A7 A6 A5 A4 0 0
7FFB IN11ADDR Endpt 11 IN Start Addr A9 A8 A7 A6 A5 A4 0 0
7FFC IN12ADDR Endpt 12 IN Start Addr A9 A8 A7 A6 A5 A4 0 0
7FFD IN13ADDR Endpt 13 IN Start Addr A9 A8 A7 A6 A5 A4 0 0
7FFE IN14ADDR Endpt 14 IN Start Addr A9 A8 A7 A6 A5 A4 0 0
7FFF IN15ADDR Endpt 15 IN Start Addr A9 A8 A7 A6 A5 A4 0 0

EZ-USB TRM v 1.9

EZ-USB Registers

Page 4

OFyZ2 S T 0 1 (=] G2 C-9

C.2.8.1 Timer 2 Mode CONtrolccovvvivieiiiiiieiiiees e e e e e e C-9
C.2.8.2 16-Bit Timer/Counter Modec.ouvvrevverniiiiiiiineeeeeeeeeeeeeee, C-10
C.2.8.3 6-Bit Timer/Counter Mode with Capturecccceeeeeveeeee. C-11
C.2.8.4 16-Bit Timer/Counter Mode with Auto-Reload C-12
C.2.8.5 Baud Rate Generator Modecoevevevriviniiiiiiiineeeeeeeeeeeen, C-12
(O B YT = U [0] (] = (o = PR TUSS C-13
C.3.1 803x/805x Compatibilitycccevvviiriuiiiiiiiiiiiiies e e e ee e e ee e eeeeeeienens C-14
C.3.2 MO O ittt e e s C-14
(@3 0 T /o T = C-19
C.3.3.1 Mode 1 Baud Ratecoeeveeeiiiiiiiiiiici e ee e C-19
C.3.3.2 MOde 1 TranSMItcccevvveieeieiiniiiiaseeesees e e e e eeeeeeeeeeeeaeaeeennnnnnnnns C-22
C.3.3.3 MOAE L1 RECEIVE ...ccoieeieeeeee e C-22
(@3 0 S /o o = P C-24
C.3.4.1 MOdE 2 TranSMItcceeveveeieieieniiiaees e eses e e e e e e eeeeeeeeeeeeaeeenennnnnnns C-24
C.3.4.2 MOUE 2 RECEIVE ...coeeeiieeeeee et s C-24
C.3.5 MOOE 3 ..o e e e e e e araaaa e C-26
C.3.6 Multiprocessor CommuNICALIONScooveiviririiiiiiiieiee e e ee e C-27
C.3.7 INEITUPL SFRS ... e C-27
C.4 INErrTUPt PrOCESSING ..oeiiiieeiiiiiiiii ittt C-33
C.4.1 Interrupt Maskingccccouiiiiiiiiiiiiii e C-33
C.4.2 INErruUPt PrIOMTIESuuiiiiiiiiiiiiiiiie it C-34
C.4.3 Interrupt SAMPIINGoveeiiiiiiiiiie e C-35
C.4.4 INEITUPL LAENCY ..vvuriiiiiiees et e e e e eeee e nnnenees C-36
C.4.5 SiNgle-Step OPEratiONueueeeiieiiriiieieaeee it ee e C-36
G D RSB e C-36
C.6 POWEr SAVING MOESooviiiiiiiiiiiiiieie ettt C-36
(@ S 0 A [0 | 1= 1V o T C-36

Table of Contents EZ-USB TRM v1.9

Figure A-1.
Figure B-1.
Figure B-2
Figure B-3
Figure C-1.
Figure C-2.
Figure C-3.
Figure C-4.
Figure C-5.
Figure C-6.
Figure C-7.
Figure C-8.
Figure C-9.

Figure C-10.
Figure C-11.
Figure C-12.
Figure C-13.
Figure C-14.
Figure C-15.
Figure C-16.

EZ-USB TRM v1.9

List of Figures

Comparative Timing of 8051 and Industry Standard 8051 A-3
8051 Block Diagram. oot e B-1
Internal RAM Organization B-3
CPU Timing for Single-Cycle Instruction B-10
TimerO/L-ModesOand 1............. .. C-3
Timer O/1-Mode 2 C-6
TimerO-Mode 3 C-7
Timer 2 - Timer/Counter with Capture C-11
Timer 2 - Timer/Counter with AutoReload C-12
Timer 2 - Baud Rate GeneratorMode C-13
Serial Port Mode 0 Receive Timing - Low Speed Operation C-17
Serial Port Mode 0 Receive Timing - High Speed Operation C-17
Serial Port Mode 0 Transmit Timing - Low Speed Operation C-18
Serial Port Mode 0 Transmit Timing - High Speed Operation C-18
Serial Port 0 Mode 1 Transmit Timing C-23
Serial Port 0 Mode 1 Receive TIMiNGo C-23
Serial Port 0 Mode 2 Transmit Timing C-25
Serial Port 0 Mode 2 Receive TIMiNG oo C-25
Serial Port 0 Mode 3 Transmit Timing C-26
Serial Port 0 Mode 3 Receive TIMiNG, C-26

List of Figures iii

EZ-USB TRM v1.9

Table A-1.
Table B-1.
Table B-2.
Table B-3.
Table B-4.
Table B-5.
Table B-6.
Table C-1.
Table C-2.
Table C-3.
Table C-4.
Table C-5.
Table C-6.
Table C-7.
Table C-8.
Table C-9.

Table C-10.
Table C-11.
Table C-12.
Table C-13.
Table C-14.
Table C-15.
Table C-16.
Table C-17.
Table C-18.
Table C-19.
Table C-20.

List of Tables

Feature Summary of 8051 Core and Common 803x/805x Configurations A4

Legend for Instruction SetTable B-4
8051 INStruction Sett B-5
Data Memory Stretch Values B-11
Special Function Registers B-13
Special Function Register ResetValues B-14
PSW Register-SFRDOh B-16
Timer/Counter Implementation Comparison C-2

TMOD Register - SFR89h C-4
TCONRegister-SRF88h C-5
CKCONRegister-SRF8Eh C-8
Timer 2 Mode Control Summary C-9

T2CONRegister-SFRC8h e C-10

Serial POrt Modes C-14
SCONORegister-SFR98h C-15
SCON1Register-SFR COh e C-16
Timer 1 Reload Values for Common Serial Port Mode 1 Baud Rates . C-20

Timer 2 Reload Values for Common Serial port Mode 1 Baud Rates . . C-21

IE Register - SFR A8h C-28
IP Register -SFRB8h C-29
EXIFRegister- SFRO91h C-30
EICON Register-SFRD8h C-31
EIERegister-SFRE8h C-32
EIP Register - SFRF8h C-33
Interrupt Natural Vectors and Priorities C-34

Interrupt Flags, Enables, and Priority Control C-35

PCON Register - SFR87h e C-37

List of Tables EZ-USB TRM v1.9

Appendix A: 8051 Introduction

Al Introduction

The EZ-USB contains an 8051 core that is binary compatible with the industry standard 8051
instruction set. This appendix provides an overview of the 8051 core features. the topics are:

* New 8051 Features

* Performance Overview

» Software Compatibility

» 803x/805x Feature Comparison
» 8051/DS80C320 Differences

A.2 8051 Features

The 8051 core provides the following design features and enhancements to the standard 8051
micro-controller:

» Compatible with industry standard 803x/805x:
- Standard 8051 instruction set
- Two full-duplex serial ports
- Three timers

» High speed architecture:

- 4 clocks/instruction cycle
- 2.5X average improvement in instruction execution time over the standard 8051
- Runs DC to 25-MHz clock
- Wasted bus cycles eliminated
- Dual data pointers
» 256 Bytes internal data RAM

* High-speed external memory interface with 16-bit address bus
» \Variable lengthtMOVXo access fast/slow RAM peripherals
* Fully static synchronous design

» Supports industry standard compilers, assemblers, emulators, and ROM monitors

EZ-USB TRM v1.9 Appendix A8051 Introduction A-1

A.3 Performance Overview

The 8051 core has been designed to offer increased performance by executing instructions in a
4-clock bus cycle, as opposed to the 12-clock bus cycle in the standard 8051 (see Figure A-1.).
The shortened bus timing improves the instruction execution rate for most instructions by a

factor of three over the standard 8051 architectures.

Some instructions require a different number of instruction cycles on the 8051 core than they

do on the standard 8051. In the standard 8051, all instructions excégticandDIV take

one or two instruction cycles to complete. In the 8051 core, instructions can take between one

and five instruction cycles to complete. The average speed improvement for the entire
instruction set is approximately 2.5X, calculated as follows:

Number of Opcodes

Speed Improvement

150 3.0X

51 1.5X

43 2.0X

2 2.4X
Total: 255 Average: 2.5X

Note: Comparison is for 8051 and standard 8051
running at the same clock frequency.

A-2 Appendix A:8051 Introduction

EZ-USB TRM v1.9

8051 Timing
single byte single cycle instruction
<+—>
ALE] [1 [[[1 [[[
PSEN# 1 [1| L[1 [[R
ADO-AD7 X XXX XX X O XXX
PORT2 X X X X X X X X
XTAL1 «
uiirvrrryvrryrriyrryyuyy
< 12 >
ALE [[[[[
PSEN# [] 1 | | | | [
ADO-AD7 X X X X X X X X X X
PORT2 X X X X X
) single byte single cycle in:truction
Standard 8051 Timing

Figure A-1. Comparative Timing of 8051 and Industry Standard 8051

A.4 Software Compatibility

The 8051 core is object code compatible with the industry standard 8051 micro-controller.
That is, object code compiled with an industry standard 8051 compiler or assembler will
execute on the 8051 core and will be functionally equivalent. However, because the 8051 core
uses a different instruction timing than the standard 8051, existing code with timing loops
may require modification.

The “Instruction Set” in Table B-2 on page B-5 lists the number of instruction cycles required
to perform each instruction on the 8051 core. The 8051 instruction cycle timing and number
of instruction cycles required for each instruction are compatible with the Dallas
Semiconductor DS80C320.

EZ-USB TRM v1.9 Appendix A8051 Introduction A-3

A.5

803x/805x Feature Comparison

Table A-1. provides a feature-by-feature comparison of the 8051 core and several common

803x/805x configurations.

Table A-1. Feature Summary of 8051 Core and Common 803x/805x Configurations

ytes

8031 8051 80C32 80C52
Clocks per instruction cycle 12 12 12 12 4 4
Program / Data Memory - 4 KB - 8 KB - 8 KRAM

ROM ROM

Internal RAM 128 bytes 128 bytes 256 bytes 256 bytes 256 bytes 256 b
Data Pointers 1 1 1 1 2 2
Serial Ports 1 1 1 1 2 2
16-bit Timers 2 2 3 3 3 3
Interrupt sources (total of int] 5 5 6 6 13 13
and ext.)
Stretch memory cycles no no no no yes yes

Appendix A:8051 Introduction

EZ-USB TRM v1.9

A.6 8051 Core/DS80C320 Differences

The 8051 core is similar to the DS80C320 in terms of hardware features and instruction cycle
timing. However, there are some important differences between the 8051 core and the
DS80C320.

A.6.1 Serial Ports

The 8051 core does not implement serial port framing error detection and does not implement
slave address comparison for multiprocessor communications. Therefore, the 8051 core also
does not implement the following SFRs: SADDRO, SADDR1, SADENO, and SADEN1.

A.6.2 Timer 2

The 8051 core does not implement Timer 2 downcounting mode or the downcount enable bit
(TMOD2, bit 0). Also, the 8051 core does not implement Timer 2 output enable (T20E) bit
(TMOD2, bit 1). Therefore, the TMOD2 SFR is also not implemented in the 8051 core.

Also, the 8051 core Timer 2 overflow output is active for one clock cycle. In the DS80C320,
the Timer 2 overflow output is a square wave with a 50% duty cycle.

A.6.3 Timed Access Protection

The 8051 core does not implement timed access protection and therefore, does not implement
the TA SFR.

A.6.4 Watchdog Timer

The EZ-USB/8051 does not implement a watchdog timer.

EZ-USB TRM v1.9 Appendix A8051 Introduction A-5

Appendix A:8051 Introduction

EZ-USB TRM v1.9

Appendix B: 8051 Architectural Overview

B.1 Introduction

This appendix provides a technical overview and description of the 8051 core architecture.

PC4/TO, PC5/T1
8051
PAO/tO_out,
¥ PA1/t0O_out
8051_cpu
8051 _ram_128 8051_timer 8051_timer2 ::';:2//1—22
Timers 0 and 1 Timer 2 R t2ex
(80..FFh indirect PB7/t20ut
A
8051_ram_128
(lower 128 Byte RAM)
(0..7Fh direct/indirect)
4 ; 8051 serial |» PCL/TxDO
8051_intr_0 Serial Port 0 l4— PCO/rxd0in
or erial Por
PA6/rxdOout
Y |8051_alu 8051_intr_1 >
o L .
Interrupt Unit
<« 5051 A 8051_serial [PB3/ixdl
ST 44— PB2/rxdlin
8051_control i
- main_regs Serial Portl L pa7/rxdiout
«—>
interrupts
8051_hiu
port_control
< A15-A0
D7 - DO
8051_op_decoder <4— CLK24
<4— RESET#

Figure B-1. 8051 Block Diagram

EZ-USB TRM v1.9 Appendix B8051 Architectural Overview B-1

B.1.1 Memory Organization

Memory organization in the 8051 core is similar to that of the industry standard 8051. There
are three distinct memory areas: program memory (ROM), data memory (external RAM), and
registers (internal RAM).

B.1.1.1 Program Memory

The EZ-USB provides 8K of data that is mapped as both program and data memory at
addresses 0x0000-0x1B3F. In addition, the bulk endpoint buffers may be used as external data
memory if they are not used as endpoint buffers. See Chapter 3, "EZ-USB Memory" for more
details.

B.1.1.2 External RAM

The EZ-USB chip has dedicated address and data pins, so port 2 and port O are not used to
access the memory bus. As shown in Chapter 3, "EZ-USB Memory", the EZ-USB is
expandable to over 100K of external program and data memory.

B.1.1.3 Internal RAM
The internal RAM (Figure B-2) consists of:

* 128 bytes of registers and scratch pad memory accessible through direct or indirect
addressing (addresses 00h—7Fh).

* A 128 register space for special function registers (SFRs) accessible through direct
addressing (addresses 80h—FFh).

» Upper 128 bytes of scratch pad memory accessible through indirect addressing
(addresses 80h—FFh).

Although the SFR space and the upper 128 bytes of RAM share the same address range, the
actual address space is separate and is differentiated by the type of addressing. Direct
addressing accesses the SFRs, and indirect addressing accesses the upper 128 bytes of RAM.

The lower 128 bytes are organized as shown in Figure B-2. The lower 32 bytes (0x00-0xIF)
form four banks of eight registers (RO—R7). Two bits on the program status word (PSW) select
which bank is in use. The next 16 bytes (0x20 - 0x2F) form a block of bit-addressable memory
space abit addresse®h-7Fh. All of the bytes in the lower 128 bytes are accessible through
direct or indirect addressing.

The SFRs occupy addresses 80h—FFh and are only accessible through direct addressing. Most
SFRs are reserved for specific functions as described in the “Special Function Registers” on
page B-12.

SFR addresses ending in Oh or 8h are bit-addressable.

B-2 Appendix B:8051 Architectural Overview EZ-USB TRM v1.9

B.1.2 Instruction Set

All 8051 instructions are binary code compatible and perform the same functions as they do
with the industry standard 8051. The effects of these instructions on bits, flags, and other
status functions is identical to the industry standard 8051. However, the timing of the
instructions is different, both in terms of number of clock cycles per instruction cycle and
timing within the instruction cycle.

Figure B-2 lists the 8051 instruction set and the number of instruction cycles required to
complete each instruction. Table B-1. defines the symbols and mnemonics used in Table B-2.

Lower 128 bytes

Indirect addressing only
7Fh
Direct RAM FFh K FFh
Upper 128
bytes SFR space
30h (optional)
Bank 2Fhf7p ... 78
Select . 80h oN 80h
(PSW bits B|t-AddressabIe 7Eh
4.3) Registers
’ Lower 128 Direct addressing only
i 20n(07 - - 00 bytes
1Fh
Bank 3
oo AN
10 1oh Bank 2 00h
o1 (())I;E Bank 1 Direct or indirect addressing
07H
00 oot Bank O

Figure B-2 Internal RAM Organization

EZ-USB v1.9 Appendix B8051 Architectural Overview B-3

Table B-1. Legend for Instruction Set Table

Symbol Function
A Accumulator
Rn Register R7-R0
direct Internal register address
@RI Internal register pointed to by RO or R1 (except MOVX)
rel Two’s complement offset byte
bit Direct bit address
#data 8-bit constant
#data 16 16-bit constant
addr 16 16-bit destination address
addr 11 11-bit destination address

Appendix B:8051 Architectural Overview EZ-USB TRM v1.9

Table B-2. 8051 Instruction Set

Appendix B8051 Architectural Overview

Mnemonic Description Byte (I:r;iﬁ;s g: dxe
Arithmetic
ADD A, Rn Add register to A 1 1 28-2F
ADD A, direct Add direct byte to A 2 2 25
ADD A, @RI Add data memory to A 1 1 26-27
ADDC A, #data Add immediate to A 2 2 24
ADDC A, Rn Add register to A with carry 1 1 38-3F
ADDC A, direct Add direct byte to A with carry 2 2 35
ADDC A, @RI Add data memory to A with carry 1 1 36-37
ADDC A, #data Add immediate to A with carry 2 2 34
SUBB A, Rn Subtract register from A with borrow 1 1 98-9K
SUBB A, direct Subtract direct byte from A with borrow 2 2 95
SUBB A, @RI Subtract data memory from A with borrow 1 1 96-9)7
SUBB A, #data Subtract immediate from A with borrow 2 2 94
INC A increment A 1 1 04
INC Rn Increment register 1 1 08-0F
INC direct Increment direct byte 2 2 05
INC @ Ri Increment data memory 1 1 06-07
DECA Decrement A 1 1 14
DEC Rn Decrement Register 1 1 18-1F
DEC direct Decrement direct byte 2 2 15
DEC @RI Decrement data memory 1 1 16-1y
INC DPTR Increment data pointer 1 3 A3
MUL AB Multiply A by B 1 5 A4
DIV AB Divide Aby B 1 5 84
DA A Decimal adjust A 1 1 D4
EZ-USB v1.9

Table B-2. 8051 Instruction Set

Mnemonic Description Byte (I:r;iﬁ;s g: dxe
Logical

ANL, Rn AND register to A 1 1 58-5F
ANL A, direct AND direct byte to A 2 2 55
ANL A, @Ri AND data memory to A 1 1 56-57
ANL A, #data AND immediate to A 2 2 54
ANL direct, A AND A to direct byte 2 2 52
ANL direct, #data AND immediate data to direct byte 3 3 53
ORL A, Rn OR register to A 1 1 48-4F
ORL A, direct OR direct byte to A 2 2 45
ORL A, @RI OR data memory to A 1 1 46-47
ORL A, #data OR immediate to A 2 2 44
ORL direct, A OR A to direct byte 2 2 42
ORL direct, #data OR immediate data to direct byte 3 3 43
XORL A, Rn Exclusive-OR register to A 1 1 68-6F
XORL A, direct Exclusive-OR direct byte to A 2 2 65
XORL A, @RI Exclusive-OR data memory to A 1 1 66-67
XORL A, #data Exclusive-OR immediate to A 2 2 64
XORL direct, A Exclusive-OR A to direct byte 2 2 62
XORL direct, #data Exclusive-OR immediate data to direct byte 3 3 63
CLRA Clear A 1 E4
CPLA Complement A 1 1 F4
SWAP A Swap nibbles of a 1 1 C4
RL A Rotate A left 1 23
RLC A Rotate A left through carry 1 1 33
RRA Rotate A right 1 1 03
RRC A Rotate A right through carry 1 1 13

Appendix B:8051 Architectural Overview

EZ-USB TRM v1.9

Table B-2. 8051 Instruction Set

Mnemonic Description Byte (I:r;iﬁ;s g: dxe
Data Transfer
MOV A, Rn Move register to A 1 1 E8-EF
MOV A, direct Move direct byte to A 2 2 E5
MOV A, @RI Move data memory to A 1 1 E6-E7
MOV A, #data Move immediate to A 2 2 74
MOV Rn, A Move A to register 1 1 F8-FF
MOV Rn, direct Move direct byte to register 2 2 A8-AK
MOV Rn, #data Move immediate to register 2 2 78-7F
MOV direct, A Move A to direct byte 2 2 F5
MOV direct, Rn Move register to direct byte 2 2 88-8H
MOV direct, direct Move direct byte to direct byte 3 3 85
MOV direct, @RI Move data memory to direct byte 2 2 86-8Y7
MOV direct, #data Move immediate to direct byte 3 3 75
MOV @Ri, A MOV A to data memory 1 1 F6-F7
MOV @RI, direct Move direct byte to data memory 2 2 AB-AY
MOV @RI, #data Move immediate to data memory 2 2 76-77
MOV DPTR, #data Move immediate to data pointer 3 3 90
MOVC A, @A+DPTR | Move code byte relative DPTR to A 1 3 93
MOVC A, @A+PC Move code byte relative PC to A 1 3 83
MOVX A, @RI Move external data (A8) to A 1 2-9* E2-E3
MOVX A, @DPTR Move external data (A16) to A 1 2-9* EO
MOVX @Ri, A Move A to external data (A8) 1 2-9* F2-F3
MOVX @DPTR, A Move A to external data (A16) 1 2-9* FO
PUSH direct Push direct byte onto stack 2 2 Co
POP direct Pop direct byte from stack 2 2 DO
XCHA, Rn Exchange A and register 1 1 C8-CF
XCH A, direct Exchange A and direct byte 2 2 C5
EZ-USB v1.9 Appendix B8051 Architectural Overview B-7

Table B-2. 8051 Instruction Set

Mnemonic Description Byte (I:r;iﬁ;s g: dxe
XCHA, @RI Exchange A and data memory 1 1 C6-q7
XCHD A, @Ri Exchange A and data memory nibble 1 1 D6-D7
* Number of cycles is user-selectable. S&retch Memory Cycles (Wait States)” on page B-10.

Boolean
CLRC Clear carry 1 1 C3
CLR bit Clear direct bit 2 2 c2
SETB C Set carry 1 1 D3
SETB bit Set direct bit 2 2 D2
CPLC Complement carry 1 1 B3
CPL bit Complement direct bit 2 2 B2
ANL C, bit AND direct bit to carry 2 2 82
ANL C, /bit AND direct bit inverse to carry 2 2 BO
ORL C, bit OR direct bit to carry 2 2 72
ORL C, /bit OR direct bit inverse to carry 2 2 AO
MOV C, bit Move direct bit to carry 2 2 A2
MOV bit, C Move carry to direct bit 2 2 92
Branching
ACALL addr 11 Absolute call to subroutine 2 3 11-F1
LCALL addr 16 Long call to subroutine 3 4 12
RET Return from subroutine 1 4 22
RETI Return from interrupt 1 4 32
AJMP addr 11 Absolute jump unconditional 2 3 01-EL
LIMP addr 16 Long jump unconditional 3 4 02
SIMP rel Short jump (relative address) 2 3 80
JCrel Jumponcarry =1 2 3 40
JNC rel Jump on carry =0 2 3 50
JB bit, rel Jump on direct bit=1 3 4 20
B-8 Appendix B:8051 Architectural Overview EZ-USB TRM v1.9

Table B-2. 8051 Instruction Set

Mnemonic Description Byte (I:r;/sctlres g: dxe
JNB bit, rel Jump on direct bit=0 3 4 30
JBC bit, rel Jump on direct bit = 1 and clear 3 4 10
JMP @ A+DPTR Jump indirect relative DPTR 1 3 73
JZ rel Jump on accumulator = 0 2 3 60
JINZ rel Jump on accumulator /=0 2 3 70
CJINE A, direct, rel Compare A, direct INE relative 3 4 B5
CINE A, #d, rel Compare A, immediate JNE relative 3 4 B4
CJINE Rn, #d, rel Compare reg, immediate JNE relative 3 4 B8-BF
CINE @ Ri, #d, rel Compare Ind, immediate JNE relative 3 4 B6-B7
DJNZ Rn, rel Decrement register, INZ relative 2 3 D8-OF
DJNZ direct, rel Decrement direct byte, INZ relative 3 4 D5

Miscellaneous

NOP No operation 1 1 00
There is an additional reserved opcode (A5) that performs the same function as NOP. All mnemonics
are copyrighted. Intel Corporation 1980.

B.1.3 Instruction Timing

Instruction cycles in the 8051 core are 4 clock cycles in length, as opposed to the 12 clock
cycles per instruction cycle in the standard 8051. This translates to a 3X improvement in
execution time for most instructions.

Some instructions require a different number of instruction cycles on the 8051 core than they
do on the standard 8051. In the standard 8051, all instructions excégtJicandDIV take

one or two instruction cycles to complete. In the 8051 core, instructions can take between one
and five instruction cycles to complete.

For example, in the standard 8051, the instructid@VvX A, @DPTRandMOV direct,

direct each take 2 instruction cycles (24 clock cycles) to execute. In the 805INOMX

A, @DPTRtakes two instruction cycles (8 clock cycles) aM@V direct, direct takes
three instruction cycles (12 clock cycles). Both instructions execute faster on the 8051 core
than they do on the standard 8051, but require different numbers of clock cycles.

For timing of real-time events, use the numbers of instruction cycles from Table B-1. to
calculate the timing of software loops. The bytes column indicates the number of memory

EZ-USB v1.9 Appendix B8051 Architectural Overview B-9

accesses (bytes) needed to execute the instruction. In most cases, the number of bytes is equal to
the number of instruction cycles required to complete the instruction. However, as indicated,
there are some instructions (for examidy andMUL that require a greater number of

instruction cycles than memory accesses.

By default, the 8051 core timer/counters run at 12 clock cycles per increment so that timer-
based events have the same timing as with the standard 8051. The timers can also be configured
to run at 4 clock cycles per increment to take advantage of the higher speed of the 8051 core.

B.1.4 CPU Timing

As previously stated, an 8051 core instruction cycle consistsQifki24 cycles. EaclCLK24

cycle forms a CPU cycle. Therefore, an instruction cycle consists of 4 CPU cycles: C1, C2, C3,
and C4, as illustrated in Figure B-3. Various events occur in each CPU cycle, depending on the
type of instruction being executed. The labels C1, C2, C3, and C4 in timing descriptions refer to
the 4 CPU cycles within a particular instruction cycle.

The execution for instruction is performed during the fetch of instructiorr1. Data writes
occur during fetch of instruction+2. The level sensitive interrupts are sampled with the rising
edge ofCLK24 at the end of C3.

Ck24 [L[L[L[L LT L1 11 L1

Instruction cycle ¥ n+1 X n+2 X

CPUcycle x"CT X C2 X_C3 X_C4 X_C1 X C2 X C3 X _Cc4 X_C1iX

Figure B-3 CPU Timing for Single-Cycle Instruction

B.1.5 Stretch Memory Cycles (Wait States)

The stretch memory cycle feature enables application software to adjust the speed of data
memory access. The 8051 core can executd@¥ Xnstruction in as few as 2 instruction
cycles. However, it is sometimes desirable to stretch this value; for example to access slow
memory or slow memory-mapped peripherals such as UARTs or LCDs.

The three LSBs of the Clock Control Register (at SFR location 8Eh) control the stretch value.
You can use stretch values between zero and seven. A stretch value of zero adds zero instruction
cycles, resulting iMOVXnstructions executing in two instruction cycles. A stretch value of

seven adds seven instruction cycles, resultind@VXnstructions executing in nine instruction
cycles. The stretch value can be changed dynamically under program control.

B-10 Appendix B8051 Architectural Overview EZ-USB TRM v1.9

By default, the stretch value resets to one (three cytl/X For full-speed data memory
access, the software must set the stretch value to zero. The stretch value affects only data
memory access (n@rogram memory).

The stretch value affects the width of the read/write strobe and all related timing. Using a
higher stretch value results in a wider read/write strobe, which allows the memory or
peripheral more time to respond.

Table B-3. lists the data memory access speeds for stretch values zero through seven. MD2-0
are the three LSBs of the Clock Control Register (CKCON.2-0).

Table B-3. Data Memory Stretch Values

MD2 | MD1 | MDO Mceyrzl‘:g St o e pen
(Clocks)

0 0 0 2 2 83.3ns
0 0 1 3 (default) 4 166.7 ns
0 L 0 4 8 333.3ns
0 1 1 S 12 500 ns
! 0 0 6 16 666.7 ns
! 0 1 7 20 833.3ns
! L 0 8 24 1000 ns
! L 1 9 28 1166.7 ns

B.1.6 Dual Data Pointers

The 8051core employs dual data pointers to accelerate data memory block moves. The
standard 8051 data pointer (DPTR) is a 16-bit value used to address external data RAM or
peripherals. The 8051 maintains the standard data pointer as DPTRO at SFR locations 82h
(DPLO) and 83h (DPHO). It is not necessary to modify existing code to use DPTRO.

The 8051 core adds a second data pointer (DPTR1) at SFR locations 84h (DPL1) and 85h
(DPH1). The SEL bit in the DPTR Select register, DPS (SFR 86h), selects the active pointer.
When SEL = 0, instructions that use the DPTR will use DPLO and DPHO. When SEL =1,
instructions that use the DPTR will use DPL1 and DPHL1. SEL is the bit O of SFR location
86h. No other bits of SFR location 86h are used.

EZ-USB v1.9 Appendix B8051 Architectural Overview B-11

All DPTR-related instructions use the currently selected data pointer. To switch the active
pointer, toggle the SEL bit. The fastest way to do so is to use the increment instrubsion (

DPS. This requires only one instruction to switch from a source address to a destination
address, saving application code from having to save source and destination addresses when
doing a block move.

Using dual data pointers provides significantly increased efficiency when moving large blocks
of data.

The SFR locations related to the dual data pointers are:

82h DPLO DPTRO low byte
83h DPHO DPTRO high byte
84h DPL1 DPTRL1 low byte
85h DPH1 DPTR1 high byte
86h DPS DPTR Select (Bit 0)

B.1.7 Special Function Registers

The Special Function Registers (SFRs) control several of the features of the 8051. Most of the
8051 core SFRs are identical to the standard 8051 SFRs. However, there are additional SFRs
that control features that are not available in the standard 8051.

Table B-4. lists the 8051 core SFRs and indicates which SFRs are not included in the standard
8051 SFR space.

In Table B-5., SFR bit positions that contain a 0 or a 1 cannot be written to and, when read,
always return the value shown (0 or 1). SFR bit positions that contain “-” are available but not
used. Table B-5. lists the reset values for the SFRs.

The following SFRs are related to CPU operation and program execution:

81h SP Stack Pointer

DOh PSW Program Status Word ()
EOh ACC Accumulator Register
FOh B B Register

Table B-6. lists the functions of the bits in the PSW SFR. Detailed descriptions of the
remaining SFRs appear with the associated hardware descriptions in Appendix C of this
databook.

B-12 Appendix B8051 Architectural Overview EZ-USB TRM v1.9

Table B-4. Special Function Registers

Register Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Addr
SP 81h
DPLO 82h
DPHO 83h
DPL1®W 84h
DPHIY 85h
DPSY 0 0 0 0 0 0 0 SEL 86h
PCON SMODO - 1 1 GF1 GFO STOH IDLE 87h
TCON TF1 TR1 TFO TRO IE1 IT1 IEO ITO 88h
TMOD GATE cIT M1 MO GATE CIT M1 MO 89h
TLO 8Ah
TL1 8Bh
THO 8Ch
TH1 8Dh
CKCONW® - - T2M TiM TOM MD2 MD1 MDO 8Eh
SPC_FN®) 0 0 0 0 0 0 0 WRS 8Fh
EXIF® IE5 IE4 I2CINT | USBINT 1 0 0 0 91h
MPAGE®Y 92h
SCONO SMO_0| SM1_.0 SM2 Q0 REN_D TB8| RB8 | TI RI_0 98h
SBUFO 99h
IE EA ES1 ET2 ESO ET1 EX1 ETO EXO A8h
IP 1 PS1 PT2 PSO PT1 PX1 PTO PX(Q B8h
SCON SMO 1| SM1_ 1| SM2 1 REN_1 TB8. 1 RBS8| TI_ 1 RI.1 Cah
SBUF1Y C1lh
T2CON TF2 EXF2 | RCLK| TCLK | EXEN2| TR2 C/T2 | CP/RL2| C8h
RCAP2L CAh
RCAP2H CBh
TL2 CCh

EZ-USB v1.9 Appendix B8051 Architectural Overview B-13

Table B-4. Special Function Registers

Register Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Addr
TH2 CDh
PSW CcYy AC FO RS1 RSO ov F1 P Doh
EICON®Y SMOD1 1 ERESI RESI INT6 0 0 0 D8h
ACC EOH
EIE® 1 1 1 EWDI EX5 EX4 El2C EUSB E8h
B FOh
EIPD 1 1 1 PX6 PX5 PX4 PI12C PUSB F8h

1) Not part of standard 8051 architecture.

Table B-5. Special Function Register Reset Values

Register Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Addr
SP 0 0 0 0 0 1 1 1 81h
DPLO 0 0 0 0 0 0 0 0 82h
DPHO 0 0 0 0 0 0 0 0 83h
DPLI® 0 0 0 0 0 0 0 0 84h
DPHI1W 0 0 0 0 0 0 0 0 85h
DPSY 0 0 0 0 0 0 0 0 86h
PCON 0 0 1 1 0 0 0 0 87h
TCON 0 0 0 0 0 0 0 0 88h
TMOD 0 0 0 0 0 0 0 0 89h
TLO 0 0 0 0 0 0 0 0 8Ah
TL1 0 0 0 0 0 0 0 0 8Bh
THO 0 0 0 0 0 0 0 0 8Ch
TH1 0 0 0 0 0 0 0 0 8Dh
CKCON® 0 0 0 0 0 0 0 1 8Eh
SPC_FN®) 0 0 0 0 0 0 0 0 8Fh
EXIF® 0 0 0 0 1 0 0 0 91h

B-14 Appendix B8051 Architectural Overview EZ-USB TRM v1.9

Table B-5. Special Function Register Reset Values

Register Bit 7 Bit 6 Bit 5 Bit4 Bit 3 Bit 2 Bit 1 Bit 0 Addr
MPAGEY 0 0 0 0 0 0 0 0 92h
SCONO 0 0 0 0 0 0 0 0 98h
SBUFO 0 0 0 0 0 0 0 0 99h
IE 0 0 0 0 0 0 0 0 A8h
IP 1 0 0 0 0 0 0 0 B8h
SCON1Y 0 0 0 0 0 0 0 0 COh
SBUF1Y 0 0 0 0 0 0 0 0 Cih
T2CON 0 0 0 0 0 0 0 0 C8h
RCAP2L 0 0 0 0 0 0 0 0 CAh
RCAP2H 0 0 0 0 0 0 0 0 CBh
TL2 0 0 0 0 0 0 0 0 CCh
TH2 0 0 0 0 0 0 0 0 CDh
PSW 0 0 0 0 0 0 0 0 DOh
EICON® 0 1 0 0 0 0 0 0 D8h
ACC 0 0 0 0 0 0 0 0 EOH
EIE® 1 1 1 0 0 0 0 0 E8h
B 0 0 0 0 0 0 0 0 FOh
EIP® 1 1 1 0 0 0 0 0 F8h

@) Not part of standard 8051 architecture.
EZ-USB v1.9 Appendix B8051 Architectural Overview B-15

Table B-6. PSW Register - SFR DOh

Bit Function

PSW.7 CY - Carry flag. This is thensignedcarry bit. The CY flag is
set when an arithmetic operation results in a carry from bit ¥ to
bit 8, and cleared otherwise. In other words, it acts as a virfual
bit 8. The CY flag is cleared on multiplication and division.

PSW.6 AC - Auxiliary carry flag. Set to 1 when the last arithmetic
operation resulted in a carry into (during addition) or borro
from (during subtraction) the high order nibble, otherwise
cleared to 0 by all arithmetic operations.

<

PSW.5 FO - User flag 0. Bit-addressable, general purpose flag for
software control.

PSW.4 RS1 - Register bank select bit 1. used with RSO to select &
register bank in internal RAM.

PSW.3 RSO - Register bank select bit 0, decoded as:
RS1 RSO Banks Selected
0 0 Register bank 0, addresses 00h-07h
0 1 Register bank 1, addresses 08h-OFh
1 0 Register bank 2, addresses 10h-17h
1 1 Register bank 3, addresses 18h-1Fh

PSW.2 OV - Overflow flag. This is theignedcarry bit. The OV flag
is set when a positive sum exceeds 7fh, or a negative sum|(in
two’s compliment notation) exceeds 80h. On a multiply, if QV
= 1, the result of the multiply is greater than FFh. On a divige,
OV =1 on adivide by 0.

PSW.1 F1 - User flag 1. Bit-addressable, general purpose flag for|
software control.

PSW.0 P - Parity flag. Set to 1 when the modulo-2 sum of the 8 bits in
the accumulator is 1 (odd parity), cleared to 0 on even parity.

Appendix B8051 Architectural Overview EZ-USB TRM v1.9

Appendix C: 8051 Hardware Description

C1l

Introduction

This chapter provides technical data about the 8051 core hardware operation and timing. The
topics are:

Timers/Counters
Serial Interface
Interrupts

Reset

Power Saving Modes

C.2

Timers/Counters

The 8051 core includes three timer/counters (Timer O, Timer 1, and Timer 2). Each timer/
counter can operate as either a timer with a clock rate based @1 #24pin, or as an event
counter clocked by th&0 pin (Timer 0),T1 pin (Timer 1), or ther2 pin (Timer 2).

Each timer/counter consists of a 16-bit register that is accessible to software as two SFRs:

Timer O - TLO and THO
Timer 1-TL1 and TH1
Timer 2 - TL2 and TH2

EZ-USB TRM V1.9 Appendix C3051 Hardware Description C-1

C.2.1 803x/805x Compatibility

The implementation of the timers/counters is similar to that of the Dallas Semiconductor
DS80C320. Table C-1. summarizes the differences in timer/counter implementation between
the Intel 8051, the Dallas Semiconductor DS80C320, and the 8051 core.

Table C-1. Timer/Counter Implementation Comparison

Dallas

Feature Intel 8051 DS80C320 8051
Number of timers 2 3 3
Timer 0/1 overflow not not TOOUT, T10UT
available as output signals| implemented| implemented| (one CLK24 pulse)
Timer 2 output enable n/a implemented not implemented
Timer 2 downcount enable n/a implemented not implemented
Timer 2 overflow available n/a implemented T20UT
as output signal (one CLK24 pulse)

C.2.2 Timers 0and 1

Timers 0 and 1 each operate in four modes, as controlled through the TMOD SFR (Table C-2.)
and the TCON SFR (Table C-3.). The four modes are:

* 13-bit timer/counter (mode 0)
e 16-bit timer/counter (mode 1)
* 8-bit counter with auto-reload (mode 2)

» Two 8-bit counters (mode 3, Timer 0 only)

C.2.3 Mode 0

Mode 0 operation, illustrated in Figure C-1., is the same for Timer O and Timer 1. In mode O,
the timer is configured as a 13-bit counter that uses bits 0-4 of TLO (or TL1) and all 8 bits of
THO (or TH1). The timer enable bit (TRO/TR1) in the TCON SFR starts the timer. Théi€/T
selects the timer/counter clock source, CLK24 or the TQihd

The timer counts transitions from the selected source as long as the GATE bit is O, or the
GATE bitis 1 and the corresponding interrupt pin (INTO# or INT1#) is 1.

When the 13-bit count increments from 1FFFh (all ones), the counter rolls over to all zeros,
the TFO (or TF1) bit is set in the TCON SFR, and the TOOUT (or T1OUT) pin goes high for
one clock cycle.

cC-2 Appendix C8051 Hardware Description EZ-USB TRM v1.9

The upper 3 bits of TLO (or TL1) are indeterminate in mode 0 and must be masked when the
software evaluates the register.

- TOM (or T1M)
Divide by 12 ﬂ
S~
CLK24 1 ¢o B CLK TLO (or TL1)
CIT 0 4 7
Divide by 4 J e I NNEEE NN
Mode Ol
TO (or T1) pin 4
Mode 1T

TRO (or TR1)

o THO (or TH1)7

m

GATE DC

INTO# pin
(or INT1#) TFO (or TF1) |— INT
|
!_ — — —p To Serial Port
(Timer 1 only)
Figure C-1. Timer 0/1 - Modes 0 and 1
C.2.4 Mode 1

Mode 1 operation is the same for Timer 0 and Timer 1. In mode 1, the timer is configured as a
16-bit counter. As illustrated in Figure C-1., all 8 bits of the LSB register (TLO or TL1) are
used. The counter rolls over to all zeros when the count increments from FFFFh. Otherwise,

mode 1 operation is the same as mode O.

EZ-USB TRM v1.9 Appendix C8051 Hardware Description Cc-3

Table C-2. TMOD Register - SFR 89h

Bit Function

TMOD.7 GATE - Timer 1 gate control. When GATE = 1, Timer 1 wil
clock only when INT1# =1 and TR1 (TCON.6) = 1. Wher
GATE =0, Timer 1 will clock only when TR1 = 1, regardless
of the state of INT1#.

TMOD.6 C/T - Counter/Timer select. Whe/T =0, Timer 1is
clocked by CLK24/4 or CLK24/12, depending on the statg of
T1M (CKCON.4). Whenc/T =1, Timer 1lis clocked by
the T1 pin.

TMOD.5 M1 - Timer 1 mode select bit 1.

TMOD .4 MO - Timer 1 mode select bit 0, decoded as:
M1 MO Mode
0 O Mode 0 : 13-bit counter
0 1 Mode 1 : 16-bit counter
1 0 Mode 2 : 8-bit counter with auto-reload
1 1 Mode 3 : Timer 1 stopped

TMOD.3 GATE - Timer 0 gate control, When GATE = 1, Timer O wil
clock only when INTO = 1 and TRO (TCON.4) = 1. When
GATE =0, Timer 0 will clock only when TRO = 1, regardless
of the state of INTO.

TMOD.2 C/T - Counter/Timer select. Wheg/T =0, TimerO0is
clocked by CLK24/4 or CLK24/12, depending on the state of
TOM (CKCON.3). Whenc/T =1, Timer O is clocked by
the TO pin.

TMOD.1 M1 - Timer O mode select bit 1.

TMOD.O MO - Timer 0 mode select bit 0, decoded as:

M1 MO Mode

0 0 Mode 0 : 13-bit counter

0 1 Mode 1 : 16-bit counter

1 0 Mode 2 : 8-bit counter with auto-reload
1 1 Mode 3 : Two 8-bit counters

Appendix C8051 Hardware Description EZ-USB TRM v1.9

Table C-3. TCON Register - SRF 88h

Bit

Function

TCON.7

TF1 - Timer 1 overflow flag. Setto 1 when the Timer 1 co
overflows and cleared when the processor vectors to the
interrupt service routine.

unt

TCON.6

TR1 - Timer 1 run control. Set to 1 to enable counting on
Timer 1.

TCON.5

TFO - Timer 0 overflow flag. Setto 1 when the Timer 0 co
overflows and cleared when the processor vectors to the
interrupt service routine.

TCON.4

TRO - Timer O run control. Set to 1 to enable counting on
Timer 0.

TCON.3

IE1 - Interrupt 1 edge detect. If external interrupt 1 is
configured to be edge-sensitive (IT1 = 1), IE1 is set by
hardware when a negative edge is detected on the INT1

corresponding interrupt service routine. In this case, IE1
also be cleared by software. If external interrupt 1 is

configured to be level-sensitive (IT1 = 0), IE1 is set when
INT1# pin is 0 and cleared when the INT1# pin is 1. In ley
sensitive mode, software cannot write to IE1.

TCON.2

IT1 - Interrupt 1 type select. INT1 is detected on falling eg
when IT1 =1; INT1 is detected as a low level when IT1 5

TCON.1

IEO - Interrupt 0 edge detect. If external interrupt O is
configured to be edge-sensitive (ITO = 1), IEQ is set by
hardware when a negative edge is detected on the INTO

also be cleared by software. If external interrupt O is

configured to be level-sensitive (ITO = 0), IEO is set when
INTO# pin is 0 and cleared when the INTO# pin is 1. In ley
sensitive mode, software cannot write to IEO.

TCON.O

when ITO = 1; INTO is detected as a low level when ITO 5

and is automatically cleared when the CPU vectors to the

and is automatically cleared when the CPU vectors to the
corresponding interrupt service routine. In this case, IEO can

unt

pin

can

he
el-

lge

0.

pin

he
el-

ITO - Interrupt O type select. INTO is detected on falling edge

0.

EZ-USB TRM v1.9

Appendix C8051 Hardware Description

TOM (or T1M)

Divide by 12

CLK24 ~____ °T

¢ 0 TLO (or TL1)

1
7
. S~ 0 RELOAD
Duvudeby4—T D—NIIIIIIII—

1
T HEEEEEN
CLK

TO (or T1) pin [T T T 111

[TTTTTTT]
0 THO (or TH1) 7

TRO (or TR1)

GATE DC

INTO# pin
(or INT1# pin? :
L__p To Serial Port

(Timer 1 only)

Figure C-2. Timer 0/1 - Mode 2

C.2.5 Mode 2

Mode 2 operation is the same for Timer O and Timer 1. In mode 2, the timer is configured as
an 8-bit counter, with automatic reload of the start value. The LSB register (TLO or TL1) is the
counter and the MSB register (THO or TH1) stores the reload value.

As illustrated in Figure C-2., mode 2 counter control is the same as for mode 0 and mode 1.
However, in mode 2, when TLincrements from FFh, the value stored infid reloaded into
TLnN.

C-6 Appendix C8051 Hardware Description EZ-USB TRM v1.9

Divide by 12

CLK24 —
1T Oy oF CLK
TLO
Divide by 4 1T

TO pin

TFO
TRO —> INT

J7 TF1 —» INT
GATE DG
INTO# pin

0 THO 7
. }»EEEEEEEEI—

Figure C-3. Timer 0 - Mode 3

C.2.6 Mode 3

In mode 3, Timer O operates as two 8-bit counters and Timer 1 stops counting and holds its
value.

As shown in Figure C-3., TLO is configured as an 8-bit counter controlled by the normal
Timer O control bits. TLO can either count CLK24 cycles (divided by 4 or by 12) or high-to-
low transitions onT0, as determined by the CAit. The GATE function can be used to give
counter enable control to the INTO# pin.

THO functions as an independent 8-bit counter. However, THO can only count CLK24 cycles
(divided by 4 or by 12). The Timer 1 control and flag bits (TR1 and TF1) are used as the
control and flag bits for THO.

When Timer 0 is in mode 3, Timer 1 has limited usage because Timer 0 uses the Timer 1
control bit (TR1) and interrupt flag (TF1). Timer 1 can still be used for baud rate generation
and the Timer 1 count values are still available in the TL1 and TH1 registers.

Control of Timer 1 when Timer 0 is in mode 3 is through the Timer 1 mode bits. To turn Timer
1 on, set Timer 1 to mode 0, 1, or 2. To turn Timer 1 off, set it to mode 3. The Timer bi€/T
and T1M bit are still available to Timer 1. Therefore, Timer 1 can count CLK24/4,
CLK24/12, or high-to-low transitions on the T1 pin. The Timer 1 GATE function is also
available when Timer 0 is in mode 3.

EZ-USB TRM v1.9 Appendix C8051 Hardware Description Cc-7

C.2.7 Timer Rate Control

The default timer clock scheme for the 8051 timers is 12 CLK24 cycles per increment, the
same as in the standard 8051. However, in the 8051, the instruction cycle is 4 CLK24 cycles.

Using the default rate (12 clocks per timer increment) allows existing application code with
real-time dependencies, such as baud rate, to operate properly. However, applications that
require fast timing can set the timers to increment every 4 CLK24 cycles by setting bits in the
Clock Control register (CKCON) at SFR location 8Eh (see Table C-4.).

The CKCON bits that control the timer clock rates are:

CKCON BitCounter/Timer

5 Timer 2
4 Timer 1
3 Timer O

When a CKCON register bit is set to 1, the associated counter increments at 4-CLK24
intervals. When a CKCON bit is cleared, the associated counter increments at 12-CLK24
intervals. The timer controls are independent of each other. The default setting for all three
timers is 0 (12-CLK24 intervals). These bits have no effect in counter mode.

Table C-4. CKCON Register - SRF 8Eh

Bit Function

CKCON.7,6 Reserved

CKCON.5 T2M - Timer 2 clock select. When T2M = 0, Timer 2 usesg
CLK24/12 (for compatibility with 80C32); when T2M = 1,
Timer 2 uses CLK24/4. This bit has no effect when Timer 2
is configured for baud rate generation.

CKCON.4 T1M - Timer 1 clock select. When T1M = 0, Timer 1 useq
CLK24/12 (for compatibility with 80C32); when T1M = 1,
Timer 1 uses CLK24/4.

CKCON.3 TOM - Timer 0 clock select. When TOM = 0, Timer 0 useg
CLK24/12 (for compatibility with 80C32); when TOM = 1,
Timer O uses CLK24/4.

CKCON.2-0 MD2, MD1, MDO - Control the number of cycles to be used
for external MOV X instructions.

Cc-8 Appendix C8051 Hardware Description EZ-USB TRM v1.9

C.2.8 Timer?2

Timer 2 runs only in 16-bit mode and offers several capabilities not available with Timers 0
and 1. The modes available with Timer 2 are:

16-bit timer/counter
16-bit timer with capture
16-bit auto-reload timer/counter

Baud rate generator

The SFRs associated with Timer 2 are:

T2CON - SFR C8h (Table C-6.)

RCAP2L - SFR CAh - Used to capture the TL2 value when Timer 2 is configured for
capture mode, or as the LSB of the 16-bit reload value when Timer 2 is configured for

auto-reload mode.

RCAP2H - SFR CBh - Used to capture the TH2 value when Timer 2 is configured for
capture mode, or as the MSB of the 16-bit reload value when Timer 2 is configured for

auto-reload mode.
TL2 - SFR CCh - Lower 8 bits of the 16-bit count.
TH2 - SFR CDh - Upper 8 bits of the 16-bit count.

C.2.8.1 Timer 2 Mode Control
Table C-5. summarizes how the SFR bits determine the Timer 2 mode.

Table C-5. Timer 2 Mode Control Summary

RCLK | TCLK | CP/RL2| TR2 Mode
0 0 1 1 16-bit timer/counter with capture
0 0 0 1 16-bit timer/counter with auto-reload
1 X X 1 Baud rate generator
X 1 X 1 Baud rate generator
X X X 0 Off
X =Don't care.

EZ-USB TRM v1.9 Appendix C8051 Hardware Description C-9

C.2.8.2 16-Bit Timer/Counter Mode

Figure C-4. illustrates how Timer 2 operates in timer/counter mode with the optional capture
feature. The C/Tdit determines whether the 16-bit counter counts CLK24 cycles (divided by
4 or 12), or high-to-low transitions on the T2 pin. The TR2 bit enables the counter. When the
count increments from FFFFh, the TF2 flag is set, and the T20UT pin goes high for one
CLK24 cycle.

Table C-6. T2CON Register - SFR C8h

Bit Function

T2CON.7 TF2 - Timer 2 overflow flag. Hardware will set TF2 when
the Timer 2 overflows from FFFFh. TF2 must be cleared to O
by the software. TF2 will only be setto a 1 if RCLK and
TCLK are both cleared to 0. Writing a 1 to TF2 forces a
Timer 2 interrupt if enabled.

T2CON.6 EXF2 - Timer 2 external flag. Hardware will set EXF2 whien
a reload or capture is caused by a high-to-low transition ¢on
the T2EX pin, and EXENZ2 is set. EXF2 must be cleared tp 0
by the software. Writing a 1 to EXF2 forces a Timer 2
interrupt if enabled.

T2CON.5 RCLK - Receive clock flag. Determines whether Timer 1/or
Timer 2 is used for Serial Port 0 timing of received data i
serial mode 1 or 3. RCLK =1 selects Timer 2 overflow as the
receive clock. RCLK =0 selects Timer 1 overflow as the
receive clock.

T2CON.4 TCLK - Transmit clock flag. Determines whether Timer 1/or
Timer 2 is used for Serial Port 0 timing of transmit data in
serial mode 1 or 3. RCLK =1 selects Timer 2 overflow as the
transmit clock. RCLK =0 selects Timer 1 overflow as the
transmit clock.

T2CON.3 EXEN2 - Timer 2 external enable. EXEN2 = 1 enables
capture or reload to occur as a result of a high-to-low
transition on the T2EX pin, if Timer 2 is not generating baud
rates for the serial port. EXEN2 = 0 causes Timer 2 to ignpre
all external events on the T2EX pin.

T2CON.2 TR2 - Timer 2 run control flag. TR2 =1 starts Timer 2. TR2
= 0 stops Timer 2.

T2CON.1 CIT2- Counter/timer select. C/T2 0 selects a timer

function for Timer 2. C/T2 1 selects a counter of falling
transitions on the T2 pin. When used as a timer, Timer 2 runs
at 4 clocks per tick or 12 clocks per tick as programmed by
CKCON.5, in all modes except baud rate generator mode.
When used in baud rate generator mode, Timer 2 runs at 2
clocks per tick, independent of the state of CKCON.5.

17

c-10 Appendix C8051 Hardware Description EZ-USB TRM v1.9

Table C-6. T2CON Register - SFR C8h

Bit Function

T2CON.O CP/RL2 Capture/reload flag. When CP/RI=21, Timer 2
captures occur on high-to-low transitions of the T2EX pin
EXEN2 = 1. When CP/RR = 0, auto-reloads occur when
Timer 2 overflows or when high-to-low transitions occur gn
the T2EX pin, if EXEN2 = 1. If either RCLK or TCLK is set
to 1, CP/RL2will not function and Timer 2 will operate in
auto-reload mode following each overflow.

f

C.2.8.3 6-Bit Timer/Counter Mode with Capture

The Timer 2 capture mode (Figure C-4.) is the same as the 16-bit timer/counter mode, with the
addition of the capture registers and control signals.

The CP/RLit in the T2CON SFR enables the capture feature. When CP#RL A high-to-
low transition on the T2EX pin when EXENZ2 = 1 causes the Timer 2 value to be loaded into
the capture registers RCAP2L and RCAP2H.

Divide by 12

CLK2 1¥0¢ cIT2
~— CLK O 78 15
Divide by 4 J 3_" TL2 | TH2 |_

T2 pin
P [TT T T T T T T T TTTT]
TR2 [RCAP2L | RCAP2H |
0 78 15

TF2 [«

EXEN2 —I_ CAPTURE
) »| EXF2 i>—> INT
T2EX pn >—m- "

Figure C-4. Timer 2 - Timer/Counter with Capture

EZ-USB TRM v1.9 Appendix C8051 Hardware Description C-11

C.2.8.4 16-Bit Timer/Counter Mode with Auto-Reload

When CP/RL2= 0, Timer 2 is configured for the auto-reload mode illustrated in Figure C-5..
Control of counter input is the same as for the other 16-bit counter modes. When the count
increments from FFFFh, Timer 2 sets the TF2 flag and the starting value is reloaded into TL2
and TH2. The software must preload the starting value into the RCAP2L and RCAP2H
registers.

When Timer 2 is in auto-reload mode, a reload can be forced by a high-to-low transition on
the T2EX pin, if enabled by EXEN2 = 1.

T2M
Divide by 12)
CLK24 —
1I o9 ¢z CLK, 78 15
Divide by 4 1 TL2 | TH2 I
T [TTITTTTTITTITTIT]
T2 pin
P HEEEEEEEEEEEEEE
TR2 [rcaP2L | RcAP2H |
0 78 15
TF2 [«
EXENZ—I_ N
) » EXF2 i>—’ INT
T2EX pin >—— J "

Figure C-5. Timer 2 - Timer/Counter with Auto Reload

C.2.8.5 Baud Rate Generator Mode

Setting either RCLK or TCLK to 1 configures Timer 2 to generate baud rates for Serial Port O
in serial mode 1 or 3. In baud rate generator mode, Timer 2 functions in auto-reload mode.
However, instead of setting the TF2 flag, the counter overflow is used to generate a shift clock
for the serial port function. As in normal auto-reload mode, the overflow also causes the
preloaded start value in the RCAP2L and RCAP2H registers to be reloaded into the TL2 and
TH2 registers.

When either TCLK = 1 or RCLK =1, Timer 2 is forced into auto-reload operation, regardless
of the state of the CP/RLAIt.

When operating as a baud rate generator, Timer 2 does not set the TF2 bit. In this mode, a
Timer 2 interrupt can only be generated by a high-to-low transition on the T2EX pin setting
the EXF2 bit, and only if enabled by EXEN2 = 1.

C-12 Appendix C8051 Hardware Description EZ-USB TRM v1.9

The counter time base in baud rate generator mode is CLK24/2. To use an external clock
source, set C/T® 1 and apply the desired clock source to the T2 pin.

TIMER 1 OVERFLOW

CLK24 | Divide |
by 2 Oy c/T2 LK Divide
by 2
1
| SMOD1
. 0Y1
T2 pin RX
RCLK CLOCK
TR2 0 78 15
—>| TL2 | TH2 | <+ |—>
HEEEEEEEEEEEEEN 1] ¢ Divide
by 16
HEEEEEEEEENEEEN TCLK

| rRcAP2L | RCAP2H | 40—
1 —
EXEN2 0 78 15 | Divide
| by 16
D—> EXF2 |— TIMER 2 INTERRUPT L 7x

n>—— |
T2EX pin CLOCK

Figure C-6. Timer 2 - Baud Rate Generator Mode

C.3 Serial Interface

The 8051 core provides two serial ports. Serial Port O is identical in operation to the standard
8051 serial port. Serial Port 1 is identical to Serial Port 0, except that Timer 2 cannot be used
as the baud rate generator for Serial Port 1.

Each serial port can operate in synchronous or asynchronous mode. In synchronous mode,
8051 generates the serial clock and the serial port operates in half-duplex mode. In
asynchronous mode, the serial port operates in full-duplex mode. In all modes, 8051 buffers
received data in a holding register, enabling the UART to receive an incoming byte before the
software has read the previous value.

Each serial port can operate in one of four modes, as outlined in Table C-7..

EZ-USB TRM v1.9 Appendix C8051 Hardware Description C-13

Table C-7. Serial Port Modes

Sync/ Data 9th Bit
Mode Async Baud Clock Bits Start/Stop Function

0 Sync | CLK24/4 or 8 None None
CLK24/12

1 ASYNC | Timer 1 or Timer2 | 8 | 1start, 1stop | None

2 Async | CLK24/32 or 9 1 start, 1 stop 0, 1, parity
CLK24/64

3 Async | Timer 1 or Timer 2 9 1 start, 1 stop | 0,1, parity

(@ Timer 2 available for Serial Port 0 only.

The SFRs associated with the serial ports are:
 SCONO - SFR 98h - Serial Port 0 control (Table C-8.).
* SBUFO - SFR 99h - Serial Port O buffer.
* SCONL1 - SFR COh - Serial Port 1 control (Table C-9.).
* SBUF1 - SFR C1h - Serial Port 1 buffer.

C.3.1 803x/805x Compatibility

The implementation of the serial interface is similar to that of the Intel 8052.

C.3.2 Mode 0

Serial mode 0 provides synchronous, half-duplex serial communication. For Serial Port O,
serial data output occurs on the RXDOOUT pin, serial data is received on the RXDO pin, and
the TXDO pin provides the shift clock for both transmit and receive. For Serial Port 1, the
corresponding pins are RXD1OUT, RXD1, and TXD1.

The serial mode 0 baud rate is either CLK24/12 or CLK24/4, depending on the state of the
SM2_0 bit (or SM2_1 for Serial Port 1). When SM2_0 = 0, the baud rate is CLK24/12, when
SM2_0 =1, the baud rate is CLK24/4.

Mode 0 operation is identical to the standard 8051. Data transmission begins when an
instruction writes to the SBUFO (or SBUF1) SFR. The UART shifts the data, LSB first, at the
selected baud rate, until the 8-bit value has been shifted out.

Mode 0 data reception begins when the REN_O (or REN_1) bit is set and the RI_0 (or RI_1)
bit is cleared in the corresponding SCON SFR. The shift clock is activated and the UART
shifts data in on each rising edge of the shift clock until 8 bits have been received. One

C-14 Appendix C8051 Hardware Description EZ-USB TRM v1.9

machine cycle after the 8th bit is shifted in, the RI_O (or RI_1) bit is set and reception stops
until the software clears the RI bit.

Figure C-7.through Figure C-10.illustrate Serial Port Mode 0 transmit and receive timing for
both low-speed (CLK24/12) and high-speed (CLK24/4) operation.

Table C-8. SCONO Register - SFR 98h

Bit Function
SCONO0.7 SMO_0 - Serial Port 0 mode bit 0.
SCONO0.6 SM1 0 - Serial Port 0 mode bit 1, decoded as:

SMO 0O SM1 0 Mode

0 0 0
0 1 1
1 0 2
1 1 3
SCONO0.5 SM2_0 - Multiprocessor communication enable. In modes 2

and 3, this bit enables the multiprocessor communicatiorn
feature. If SM2_0 =1 in mode 2 or 3, then RI_0 will not b
activated if the received 9th bit is 0.

11

If SM2_0=1 in mode 1, then RI_0 will only be activated ifja
valid stop is received. In mode 0, SM2_0 establishes the
baud rate: when SM2_0=0, the baud rate is CLK24/12; when
SM2_0=1, the baud rate is CLK24/4.

SCONO0.4 REN_O - Receive enable. When REN_0=1, reception is
enabled.
SCONO0.3 TB8_0 - Defines the state of the 9th data bit transmitted |in

modes 2 and 3.

SCONO0.2 RB8_0 - In modes 2 and 3, RB8_0 indicates the state of|the
9th bit received. In mode 1, RB8_0 indicates the state of the
received stop bit. In mode 0, RB8_0 is not used.

SCONO.1 TI_O - Transmit interrupt flag. indicates that the transmit data
word has been shifted out. In mode 0, TI_O is set at the gnd
of the 8th data bit. In all other modes, Tl_0 is set when the
stop bitis placed on the TXDO piitl_0 must be cleared by
firmware.

SCONO0.0 RI_O - Receive interrupt flag. Indicates that serial data word
has been received. In mode 0, RI_0 is set at the end of the¢ 8th
data bit. In mode 1, RI_0 is set after the last sample of the
incoming stop bit, subject to the state of SM2_0. In modes 2
and 3, RI_O is set at the end of the last sample of RB8_0
RI1_0 must be cleared by firmware.

EZ-USB TRM v1.9 Appendix C8051 Hardware Description C-15

Table C-9. SCON1 Register - SFR COh

Bit Function
SCON1.7 SMO_1 - Serial Port 1 mode bit 0.
SCONL1.6 SM1 1 - Serial Port 1 mode bit 1, decoded as:

SMO 1 SM1.1 Mode

0 0 0
0 1 1
1 0 2
1 1 3
SCON1.5 SM2_1 - Multiprocessor communication enable. In modes 2

and 3, this bit enables the multiprocessor communicatior
feature. If SM2_1 =1 in mode 2 or 3, then RI_1 will not b
activated if the received 9th bit is 0.

11%

If SM2_1=1 in mode 1, then RI_1 will only be activated ifja
valid stop is received. In mode 0, SM2_1 establishes the
baud rate: when SM2_1=0, the baud rate is CLK24/12; when
SM2_1=1, the baud rate is CLK24/4.

SCON1.4 REN_1 - Receive enable. When REN_1=1, reception is
enabled.
SCONL1.3 TB8 1 - Defines the state of the 9th data bit transmitted |in

modes 2 and 3.

SCONL1.2 RB8_1 - In modes 2 and 3, RB8_0 indicates the state of|the
9th bit received. In mode 1, RB8_1 indicates the state of the
received stop bit. In mode 0, RB8_1 is not used.

SCON1.1 TI_1 - Transmit interrupt flag. indicates that the transmit data
word has been shifted out. In mode 0, TI_1 is set at the gnd

of the 8th data bit. In all other modes, Tl_1 is set when the
stop bit is placed on the TXDO pin. TI_1 must be cleared by
the software.

SCONL1.0 RI_1 - Receive interrupt flag. Indicates that serial data word
has been received. In mode 0, RI_1 is set at the end of the 8th
data bit. In mode 1, RI_1 is set after the last sample of the
incoming stop bit, subject to the state of SM2_1. In modes 2
and 3, RI_1is set at the end of the last sample of RB8_1
RI_1 must be cleared by the software.

Appendix C8051 Hardware Description EZ-USB TRM v1.9

CLK24

PSEN

RXDO

RXDOOUT

oo I JJrfrfrfrrr

TI

RI

Figure C-7. Serial Port Mode 0 Receive Timing - Low Speed Operation

cus [TUTUTUTTUTTUTUUUUU T UL UTTN |

psen [L L _J [[0 I I LI [
RXDO X O EX T XBX T XBX L XBX XB XX

RXDOOUT

xpo 1 I I L/ [[L [

TI

RI

Figure C-8. Serial Port Mode 0 Receive Timing - High Speed Operation

EZ-USB TRM v1.9 Appendix C8051 Hardware Description

CLK24

psen [UUUIHUTUUUTUTUUTUUU U UU UYL

RXDO
RXDOOUT X Do X b1 X D2 X D3 X D4 X D5 X D6 X D7 X
Tx00 L[] [[T M rfrrr
TI [

RI

Figure C-9. Serial Port Mode 0 Transmit Timing - Low Speed Operation

CLK24 UUUuuuUyuyyUu Uyt
PseN | || L[L L[[LI [0 LI ©L_1 1

RXDO
RXDoOUT ___ X D0 X b1 X D2 X b3 X b4 X D5 X D6 X D7 X
TXDO [A S

TI

RI

Figure C-10. Serial Port Mode 0 Transmit Timing - High Speed Operation

C-18 Appendix C8051 Hardware Description EZ-USB TRM v1.9

C.3.3 Mode 1

Mode 1 provides standard asynchronous, full-duplex communication, using a total of 10 bits:
1 start bit, 8 data bits, and 1 stop bit. For receive operations, the stop bit is stored in RB8_0 (or
RB8_1). Data bits are received and transmitted LSB first.

C.3.3.1 Mode 1 Baud Rate

The mode 1 baud rate is a function of timer overflow. Serial Port O can use either Timer 1 or
Timer 2 to generate baud rates. Serial Port 1 can only use Timer 1. The two serial ports can
run at the same baud rate if they both use Timer 1, or different baud rates if Serial Port O uses
Timer 2 and Serial Port 1 uses Timer 1.

Each time the timer increments from its maximum count (FFh for Timer 1 or FFFFh for Timer
2), a clock is sent to the baud rate circuit. The clock is then divided by 16 to generate the baud
rate.

When using Timer 1, the SMODO (or SMOD1) bit selects whether or not to divide the Timer
1 rollover rate by 2. Therefore, when using Timer 1, the baud rate is determined by the
equation:

SMODx
2

32

Baud Rate = x Timer 1 Overflow

SMODO is SFR bit PCON.7; SMOD1 is SFR bit EICON.7.

When using Timer 2, the baud rate is determined by the equation:

Timer 2 Overflow
16

Baud Rate =

To use Timer 1 as the baud rate generator, it is best to use Timer 1 mode 2 (8-bit counter with
auto-reload), although any counter mode can be used. The Timer 1 reload is stored in the TH1
register, which makes the complete formula for Timer 1:

SMODx
CLK24
X

Baud Rate = _—
32 12 x (256 - TH1)

EZ-USB TRM v1.9 Appendix C8051 Hardware Description C-19

The 12 in the denominator in the above equation can be changed to 4 by setting the T1M bit in
the CKCON SFR. To derive the required TH1 value from a known baud rate (when TM1 = 0),
use the equation:

SMODx
2 x CLK24

384 x Baud Rate

TH1= 256 -

You can also achieve very low serial port baud rates from Timer 1 by enabling the Timer 1
interrupt, configuring Timer 1 to mode 1, and using the Timer 1 interrupt to initiate a 16-bit

software reload. Table C-10. lists sample reload values for a variety of common serial port
baud rates.

Note that more accurate baud rates are achieved by using Timer 2 as the baud rate generator
(next section).

Table C-10. Timer 1 Reload Values for Common Serial Port Mode 1 Baud Rates

Nominal 24 MHz Reload Actual Error
Rate Divisor Value Rate
57600 6 FA 62500 8.5%
38400 10 F6 37500 -2.3%
28800 13 F3 28846 +0.16%
19200 20 EC 18750 -2.3%
9600 39 D9 9615 +0.16%
4800 78 B2 4807 +0.15%
2400 156 64 2403 +.13%
Settings: SMOD =1, C/F0, Timerl mode=2, TIM=1
Note: Using rates that are off by 2.3% or more will not work in all
systems.

To use Timer 2 as the baud rate generator, configure Timer 2 in auto-reload mode and set the
TCLK and/or RCLK bits in the T2CON SFR. TCLK selects Timer 2 as the baud rate
generator for the transmitter; RCLK selects Timer 2 as the baud rate generator for the receiver.

The 16-bit reload value for Timer 2 is stored in the RCAP2L and RCA2H SFRs, which makes
the equation for the Timer 2 baud rate:

C-20 Appendix C8051 Hardware Description EZ-USB TRM v1.9

CLK24
32 x (65536 - RCAP2H,RCAP2L)

Baud Rate =

where RCAP2H,RCAP2L is the content of RCAP2H and RCAP2L taken as a 16-bit unsigned
number.

The 32 in the denominator is the result of CLK24 being divided by 2 and the Timer 2 overflow
being divided by 16. Setting TCLK or RCLK to 1 automatically causes CLK24 to be divided
by 2, as shown in Figure C-6., instead of the 4 or 12 determined by the T2M bit in the
CKCON SFR.

To derive the required RCAP2H and RCAP2L values from a known baud rate, use the
equation:

CLK24
32 x Baud Rate

RCAP2H,RCAP2L = 65536 -

When either RCLK or TCLK is set, the TF2 flag will not be set on a Timer 2 roll over, and the
T2EX reload trigger is disabled.

Table C-11. Timer 2 Reload Values for Common Serial port Mode 1 Baud Rates

Nominal CIT2 Diviso Reload Val Actual Error

Rate r Rate

57600 0 13 F3 57692.31 0.16%
38400 0 20 EC 37500 -2.34%
28800 0 26 E6 28846.15 0.16%
19200 0 39 D9 19230.77 0.16%
9600 0 78 B2 9615.385 0.16%
4800 0 156 64 4807.697 0.16%
2400 0 312 FECS8 2403.844 0.16%

Note: using rates that are off by 2.3% or more will not work in all systems.

EZ-USB TRM v1.9 Appendix C8051 Hardware Description cC-21

C.3.3.2 Mode 1 Transmit

Figure C-11. illustrates the mode 1 transmit timing. In mode 1, the UART begins transmitting
after the first roll over of the divide-by-16 counter after the software writes to the SBUFO (or
SBUF1) register. The UART transmits data on the TXDO (or TXD1) pin in the following
order: start bit, 8 data bits (LSB first), stop bit. The TI_0 (or TI_1) bitis set 2 CLK24 cycles
after the stop bit is transmitted.

C.3.3.3 Mode 1 Receive

Figure C-12. illustrates the mode 1 receive timing. Reception begins at the falling edge of a
start bit received on the RXDO (or RXD1) pin, when enabled by the REN_0O (or REN_1) bit.
For this purpose, the RXDO (or RXD1) pin is sampled 16 times per bit for any baud rate.
When a falling edge of a start bit is detected, the divide-by-16 counter used to generate the
receive clock is reset to align the counter roll over to the bit boundaries.

For noise rejection, the serial port establishes the content of each received bit by a majority
decision of 3 consecutive samples in the middle of each bit time. This is especially true for the
start bit. If the falling edge on the RXDO (or RXD1) pin is not verified by a majority decision
of 3 consecutive samples (low), then the serial port stops reception and waits for another
falling edge on the RXDO (or RXD1) pin.

At the middle of the stop bit time, the serial port checks for the following conditions:
* RILO(orRI_1)=0,and

e If SM2_0 (or SM2_1) =1, the state of the stop bit is 1.
(If SM2_0 (or SM2_1) = 0, the state of the stop bit doesn’t matter.)

If the above conditions are met, the serial port then writes the received byte to the SBUFO (or
SBUF1) register, loads the stop bit into RB8_0 (or RB8_1), and sets the RI_O (or RI_1) bit. If
the above conditions are not met, the received data is lost, the SBUF register and RB8 bit are
not loaded, and the RI bit is not set.

After the middle of the stop bit time, the serial port waits for another high-to-low transition on
the (RXDO or RXD1) pin.

Mode 1 operation is identical to that of the standard 8051 when Timers 1 and 2 use CLK24/12
(the default).

C-22 Appendix C8051 Hardware Description EZ-USB TRM v1.9

Write to
SBUFO

TX CLK

SHIFT

TXDO

RXDO

sTART/ D0 X D1 X D2 X D3 X b4 X b5 X D6 X D7 STOP

RXDOOUT

TILO

RI_O

Figure C-11. Serial Port 0 Mode 1 Transmit Timing

RX CLK

[S| | | O S |

RXDO

Bit detector
sampling

STARV 5o X' b1 X D2 X D3 X D4 X D5 X D6 X D7 / sToP

[R S R R |

SHIFT
RXDOOUT

TXDO

TIO

RO

EZ-USB TRM v1.9

Figure C-12. Serial Port 0 Mode 1 Receive Timing

Appendix C8051 Hardware Description

C.3.4 Mode 2

Mode 2 provides asynchronous, full-duplex communication, using a total of 11 bits: 1 start
bit, 8 data bits, a programmable 9th bit, and 1 stop bit. The data bits are transmitted and
received LSB first. For transmission, the 9th bit is determined by the value in TB8_0 (or
TB8_1). To use the 9th bit as a parity bit, move the value of the P bit (SFR PSW.0) to TB8_0
(or TB8_1).

The mode 2 baud rate is either CLK24/32 or CLK24/64, as determined by the SMODO (or
SMOD1) bit. The formula for the mode 2 baud rate is:

SMODx
2 x CLK24

64

Baud Rate =

Mode 2 operation is identical to the standard 8051.

C.3.4.1 Mode 2 Transmit

Figure C-13. illustrates the mode 2 transmit timing. Transmission begins after the first roll
over of the divide-by-16 counter following a software write to SBUFO (or SBUF1). The
UART shifts data out on the TXDO (or TXD1) pin in the following order: start bit, data bits
(LSB first), 9th bit, stop bit. The TI_0 (or Tl1_1) bit is set when the stop bit is placed on the
TXDO (or TXD1) pin.

C.3.4.2 Mode 2 Receive

Figure C-14. illustrates the mode 2 receive timing. Reception begins at the falling edge of a
start bit received on the RXDO (or RXD1) pin, when enabled by the REN_O (or REN_1) bit.
For this purpose, the RXDO (or RXD1) pin is sampled 16 times per bit for any baud rate.
When a falling edge of a start bit is detected, the divide-by-16 counter used to generate the
receive clock is reset to align the counter roll over to the bit boundaries.

For noise rejection, the serial port establishes the content of each received bit by a majority
decision of 3 consecutive samples in the middle of each bit time. This is especially true for the
start bit. If the falling edge on the RXDO (or RXD1) pin is not verified by a majority decision
of 3 consecutive samples (low), then the serial port stops reception and waits for another
falling edge on the RXDO (or RXD1) pin.

At the middle of the stop bit time, the serial port checks for the following conditions:
* RILO(orRI_1)=0,and

e If SM2_0 (or SM2_1) =1, the state of the stop bit is 1.
(If SM2_0 (or SM2_1) = 0, the state of the stop bit doesn’t matter.)

C-24 Appendix C8051 Hardware Description EZ-USB TRM v1.9

If the above conditions are met, the serial port then writes the received byte to the SBUFO (or
SBUF1) register, loads the stop bit into RB8_0 (or RB8_1), and sets the RI_O (or RI_1) bit. If
the above conditions are not met, the received data is lost, the SBUF register and RB8 bit are
not loaded, and the RI bit is not set. After the middle of the stop bit time, the serial port waits
for another high-to-low transition on the RXO0r RXD1) pin.

Write to
SBUFO ﬂ

TX CLK | | | N | | N | A | | |
SHIFT [| S | | | A A |

TXDO STARY b0 X b1 XDb2 X D3 X D4 X b5 X D6 X_D7 X 7B8 /STOP

RXDO
RXDOOUT

TLO

RI_O

Figure C-13. Serial Port 0 Mode 2 Transmit Timing

rco | 1@ @ | [1

RXDO STARY po X b1 X D2 X D3 X D4 X D5 X D6 X D7 X RB8/STOP
Bit detector 1|l Il 0 1ll Il Il 0|l ||

sampling g oo T

SHIFT
RXDOOUT

TXDO
TILO

RO

Figure C-14. Serial Port 0 Mode 2 Receive Timing

EZ-USB TRM v1.9 Appendix C8051 Hardware Description C-25

C.3.5 Mode 3

Mode 3 provides asynchronous, full-duplex communication, using a total of 11 bits: 1 start

bit, 8 data bits, a programmable 9th bit, and 1 stop bit. The data bits are transmitted and

received LSB first.

The mode 3 transmit and operations are identical to mode 2. The mode 3 baud rate generation
is identical to mode 1. That is, mode 3 is a combination of mode 2 protocol and mode 1 baud
rate. Figure C-15.illustrates the mode 3 transmit timing. Figure C-16.illustrates the mode 3

receive timing.

Mode 3 operation is identical to that of the standard 8051 when Timers 1 and 2 use CLK24/12

(the default).

Write to
SBUFO

TX CLK

[| | | |

SHIFT

[| S | | N IS |

TXDO

STARV Do X b1 XD2 X D3 X D4 X D5 X D6 X D7 X TB8 /STOP

RXDO

RXDOOUT
TILO

—

RI_O

Figure C-15. Serial Port 0 Mode 3 Transmit Timing

[O S A

RX CLK H

RXDO

Bit detector

NTART oo X b1 X D2 X D3 X D4 X D5 X D6 X_D7 X RB8/STOP

sampling

& 1 & 1 1

SHIFT

RXDOOUT

TXDO

TLO

RO

Figure C-16. Serial Port 0 Mode 3 Receive Timing

Appendix C8051 Hardware Description EZ-USB TRM v1.9

C.3.6 Multiprocessor Communications

The multiprocessor communication feature is enabled in modes 2 and 3 when the SM2 bit is
set in the SCON SFR for a serial port (SM2_0 for Serial Port 0, SM2_1 for Serial Port 1). In
multiprocessor communication mode, the 9th bit received is stored in RB8_0 (or RB8_1) and,
after the stop bit is received, the serial port interrupt is activated only if RB8_0 (or RB8_1) =
1.

A typical use for the multiprocessor communication feature is when a master wants to send a
block of data to one of several slaves. The master first transmits an address byte that identifies
the target slave. When transmitting an address byte, the master sets the 9th bit to 1; for data
bytes, the 9th bitis 0.

With SM2_0 (or SM2_1) =1, no slave will be interrupted by a data byte. However, an address
byte interrupts all slaves so that each slave can examine the received address byte to
determine whether that slave is being addressed. Address decoding must be done by software
during the interrupt service routine. The addressed slave clears its SM2_0 (or SM2_1) bit and
prepares to receive the data bytes. The slaves that are not being addressed leave the SM2_0 (or
SM2_1) bit set and ignore the incoming data bytes.

C.3.7 Interrupt SFRs

The following SFRs are associated with interrupt control:
IE - SFR A8h (Table C-12.)

IP - SFR B8h (Table C-13.)

« EXIF - SFR 91h (Table C-14.)

« EICON - SFR D8h (Table C-15.)

« EIE - SFR E8h (Table C-16.)

« EIP - SFR F8h (Table C-17.)

The IE and IP SFRs provide interrupt enable and priority control for the standard interrupt
unit, as with the standard 8051. Additionally, these SFRs provide control bits for the Serial
Port 1 interrupt. These bits (ES1 and PS1) are available only when the extended interrupt unit
is implemented (ext_intr=1). Otherwise, they are read as 0.

Bits ESO, ES1, ET2, PS0O, PS1, and PT2 are present, but not used, when the corresponding
module is not implemented.

The EXIF, EICON, EIE and EIP registers provide flags, enable control, and priority control
for the optional extended interrupt unit.

EZ-USB TRM v1.9 Appendix C8051 Hardware Description Cc-27

Table C-12. IE Register - SFR A8h

Bit

Function

IE.7

EA - Global interrupt enable. Controls masking of all
interrupts except USB wakeup (resume). EA = 0 disables
interrupts except USB wakeup. When EA = 1, interrupts
enabled or masked by their individual enable bits.

IE.6

ES1 - Enable Serial Port 1 interrupt. ES1 = 0 disables Se
port 1 interrupts (TI_1 and RI_1). ES1 = 1 enables interry
generated by the TI_1 or TI_1 flag.

IE.5

ET2 - Enable Timer 2 interrupt. ET2 = 0 disables Timer 2
interrupt (TF2). ET2=1 enables interrupts generated by t
TF2 or EXF2 flag.

5 all
are

rial
pts

ne

IE.4

ESO - Enable Serial Port 0 interrupt. ESO = 0 disables Se
Port O interrupts (TI_0 and RI_0). ES0=1 enables interru
generated by the TI_0 or RI_0 flag.

rial
Dts

IE.3

ET1 - Enable Timer 1 interrupt. ET1 = 0 disables Timer 1
interrupt (TF1). ET1=1 enables interrupts generated by tk
TF1 flag.

ne

IE.2

EX1 - Enable external interrupt 1. EX1 = 0 disables exte
interrupt 1 (INT1). EX1=1 enables interrupts generated b
the INT1# pin.

nal

IE.1

ETO - Enable Timer O interrupt. ETO = 0 disables Timer O
interrupt (TF0). ETO=1 enables interrupts generated by tk
TFO flag.

ne

IE.O

EXO - Enable external interrupt 0. EXO = 0 disables exte
interrupt O (INTO). EX0=1 enables interrupts generated b
the INTO# pin.

nal

Appendix C8051 Hardware Description

EZ-USB TRM v1.9

Table C-13. IP Register - SFR B8h

Bit Function

IP.7 Reserved. Read as 1.

IP.6 PS1 - Serial Port 1 interrupt priority control. PS1=0 sets
Serial Port 1 interrupt (T1_1 or RI_1) to low priority. PS1=11
sets Serial port 1 interrupt to high priority.

IP.5 PT2 - Timer 2 interrupt priority control. PT2=0 sets Timer|2
interrupt (TF2) to low priority. PT2=1 sets Timer 2 interrupt
to high priority.

IP.4 PSO - Serial Port O interrupt priority control. PS0=0 sets
Serial Port O interrupt (T1_0 or RI_0) to low priority. PSO=[1
sets Serial Port 0 interrupt to high priority.

IP.3 PT2 - Timer 1 interrupt priority control. PT1 = 0 sets Time[1
interrupt (TF1) to low priority. PT1=1 sets Timer 1 interrupt
to high priority.

IP.2 PX1 - External interrupt 1 priority control. PX 1= 0 sets
external interrupt 1 (INT1) to low priority. PT1 = 1 sets
external interrupt 1 to high priority.

IP.1 PTO - Timer O interrupt priority control. PTO = 0 sets Time[0
interrupt (TFO) to low priority. PTO=1 sets Timer O interrupt
to high priority.

IP.0 P X0 - External interrupt O priority control. PX0 = 0 sets

external interrupt O (INTO) to low priority. PX0=1 sets
external interrupt O to high priority.

EZ-USB TRM v1.9

Appendix C8051 Hardware Description

Table C-14. EXIF Register - SFR 91h

Bit

Function

EXIF.7

IE5 - External interrupt 5 flag. IE 5= 1 indicates a falling
edge was detected at the INT5# pin. IE5 must be cleared
software. Setting IE5 in software generates an interrupt,
enabled.

EXIF.6

IE4 - External interrupt 4 flag. IE4 indicates a rising edge
was detected at the INT4 pin. IE4 must be cleared by
software. Setting IE4 in software generates an interrupt,
enabled.

EXIF.5

I2CINT - External interrupt 3 flag. The “INT3” interrupt is
internally connected to the EZ-USBQ controller and
renamed “I2CINT”. I2CINT = 1 indicates ariC interrupt.
I2CINT must be cleared by software. Setting I2CINT in
software generates an interrupt, if enabled.

EXIF.4

internally connected to the EZ-USB interrupt and rename
“USBINT”. USBINT = 1 indicates an USB interrupt.
USBINT must be cleared by software. Setting USBINT in
software generates an interrupt, if enabled.

USBINT - External interrupt 2 flag. The “INT2” interrupt i$

EXIF.3

Reserved. Read as 1.

EXIF.2-0

Reserved. Read as 0.

Appendix C8051 Hardware Description

by

=Y

d

EZ-USB TRM v1.9

Table C-15. EICON Register - SFR D8h

Bit

Function

EICON.7

SMODL1 - Serial Port 1 baud rate doubler enable. When
SMOD1 = 1 the baud rate for Serial Port is doubled.

EICON.6

Reserved. Read as 1.

EICON.5

ERESI - Enable resume interrupt. ERESI = 0 disables
resume interrupt (RESI). ERESI = 1 enables interrupts
generated by the resume event.

EICON.4

RESI - Wakeup interrupt flag. EICON.4 = 1 indicates a
negative transition was detected at the WAKEUP# pin, o
that USB has activity resumed from the suspended state
EICON.4 = 1 must be cleared by software before exiting
interrupt service routine, otherwise the interrupt occurs
again. Setting EICON.4=1 in software generates a wake
interrupt, if enabled.

the

ip

EICON.3

INT6 - External interrupt 6. When INT6 = 1, the INT6 pin
has detected a low to high transition. INT6 will remain acti
until cleared by writing a 0O to this bit. Setting this bit in
software generates an INT6 interrupt in enabled.

EICON.2-0

Reserved. Read as 0.

EZ-USB TRM v1.9

Appendix C8051 Hardware Description

Table C-16. EIE Register - SFR E8h

Bit Function
EIE.7-5 Reserved. Read as 1.

EIE.4 EX6 - Enable external interrupt 6. EX6 = 0 disables extefnal
interrupt 6 (INT6). EX6 = 1 enables interrupts generated by
the INT6 pin.

EIE.3 EX5 - Enable external interrupt 5. EX5 = 0 disables extefnal
interrupt 5 (INT5). EX5 = 1 enables interrupts generated by
the INT5# pin.

EIE.2 EX4 - Enable external interrupt 4. EX4 = 0 disables external
interrupt 4 (INT4). EX4 = 1 enables interrupts generated by
the INT4 pin.

EIE.1 EI2C - Enable external interrupt 3. EI2C = 0 disables
external interrupt 3 (INT3). EI2C = 1 enables interrupts
generated by théC interface.

EIE.O EUSB - Enable USB interrupt. EUSB = 0 disables USB
interrupts. EUSB = 1 enables interrupts generated by the
USB Interface.

Appendix C8051 Hardware Description EZ-USB TRM v1.9

Table C-17. EIP Register - SFR F8h

Bit Function
EIP.7-5 Reserved. Read as 1.
EIP.4 PX6 - External interrupt 6 priority control. PX6 = 0 sets

external interrupt 6 (INT6) to low priority. PX6 = 1 sets
external interrupt 6 to high priority.

EIP.3 PX5 - External interrupt 5 priority control. PX5 = 0 sets
external interrupt 5 (INT5#) to low priority. PX5=1 sets
external interrupt 5 to high priority.

EIP.2 PX4 - External interrupt 4 priority control. PX4 = 0 sets
external interrupt 4 (INT4) to low priority. PX4=1 sets
external interrupt 4 to high priority.

EIP.1 PI2C - External interrupt 3 priority control. PI2C = 0 sei§ |
interrupt to low priority. PI2C=1 set$C interrupt to high
priority.

EIP.O PUSB - External interrupt 2 priority control. PUSB = 0 sefts
USB interrupt to low priority. PUSB=1 sets USB interrupt to
high priority.

C.4 Interrupt Processing

When an enabled interrupt occurs, the 8051 core vectors to the address of the interrupt service
routine (ISR) associated with that interrupt, as listed in Table C-18.. The 8051 core executes
the ISR to completion unless another interrupt of higher priority occurs. Each ISR ends with a
RETI (return from interrupt) instruction. After executing tR&ETI, the CPU returns to the

next instruction that would have been executed if the interrupt had not occurred.

An ISR can only be interrupted by a higher priority interrupt. That is, an ISR for a low-level
interrupt can only be interrupted by high-level interrupt. An ISR for a high-level interrupt can
only be interrupted by the resume interrupt.

The 8051 core always completes the instruction in progress before servicing an interrupt. If
the instruction in progress RETI, or a write access to any of the IP, IE, EIP, or EIE SFRs,
the 8051 core completes one additional instruction before servicing the interrupt.

C.4.1 Interrupt Masking

The EA bitin the IE SFR (IE.7) is a global enable for all interrupts except the USB wakeup
(resume) interrupt. When EA =1, each interrupt is enabled or masked by its individual enable
bit. When EA = 0, all interrupts are masked, except the USB wakeup interrupt.

EZ-USB TRM v1.9 Appendix C8051 Hardware Description C-33

Table C-19. provides a summary of interrupt sources, flags, enables, and priorities.

Table C-18. Interrupt Natural Vectors and Priorities

Interrupt Description g?gﬁg In\t/zrcr::) ?t
RESUME USB Wakeup (resume) interrupt 0 33h
INTO External interrupt O 1 03h
TFO Timer O interrupt 2 0Bh
INT1 External interrupt 1 3 13h
TF1 Timer 1 interrupt 4 1Bh
TI_OorRI_O Serial port O interrupt 5 23h
TF2 or EXF2 Timer 2 interrupt 6 2Bh
TI_lorRI_1 Serial port 1 interrupt 7 3Bh
INT2 USB interrupt 8 43h
INT3 I2C interrupt 9 4Bh
INT4 External interrupt 4 4 53h
INTS External interrupt 5 11 5Bh
INT6 External interrupt 6 12 63H

C.4.2 Interrupt Priorities

There are two stages of interrupt priority assignment, interrupt level and natural priority. The
interrupt level (highest, high, or low) takes precedence over natural priority. The USB wakeup
interrupt, if enabled, always has highest priority and is the only interrupt that can have highest
priority. All other interrupts can be assigned either high or low priority.

In addition to an assigned priority level (high or low), each interrupt also has a natural priority,
as listed in Table C-18.. Simultaneous interrupts with the same priority level (for example,
both high) are resolved according to their natural priority. For example, if INTO and INT2 are
both programmed as high priority, INTO takes precedence due to its higher natural priority.

Once an interrupt is being serviced, only an interrupt of higher priority level can interrupt the
service routine of the interrupt currently being serviced.

Appendix C8051 Hardware Description EZ-USB TRM v1.9

Table C-19. Interrupt Flags, Enables, and Priority Control

Interrupt Description Flag Enable Eﬂﬁ%
RESUME Resume interrupt| EICON.4 EICON N/A
INTO External interrupt Q TCON.1 IE.O IP.0
TFO Timer O interrupt | TCON.5 IE.1 IP.1
INT1 External interrupt1 TCON.3 IE.2 IP.2
TF1 Timer 1 interrupt | TCON.7 IE.3 IP.3
TI_OorRI_O | Serial port0 SCONO0.0 (RI.0), IE.4 IP.4

transmit or receive| SCONO.1 (Ti_0)
TF2 or EXF2 | Timer 2interrupt | T2CON.7 (TF2), IE.5 IP.5
T2CON.6 (EXF2)
Tl 1orRI_1 | Serial portl SCON1.0 (RI_1), IE.6 IP.6
transmit or receive| SCON1.1 (TI_1)
USB USB interrupt EXIF.4 EIE.O EIP.O
12C [2C interrupt EXIT.5 EIE.1 EIP.1
INT4 External interrupt 4 EXIF.6 EIE.2 EIP.2
INTS External interrupt 3 EXIF.7 EIE.3 EIP.3
INT6 External INT 6 EICON.3 EIE.4 EIP.4

C.4.3 Interrupt Sampling

The internal timers and serial ports generate interrupts by setting their respective SFR
interrupt flag bits. External interrupts are sampled once per instruction cycle.

INTO and INT1 are both active low and can be programmed to be either edge-sensitive or

level-sensitive, through the ITO and IT1 bits in the TCON SFR. For example, when ITO =0,
INTO is level-sensitive and the 8051 core sets the IEQ flag when the INTO# pin is sampled

low. When ITO =1, INTO is edge-sensitive and the 8051 sets the IEO flag when the INTO#
pin is sampled high then low on consecutive samples.

The remaining five interrupts (INT 4-6, USB &C Interrupts) are edge-sensitive only. INT6
and INT4 are active high and INT5 is active low.

To ensure that edge-sensitive interrupts are detected, the corresponding ports should be held
high for 4 CLK24 cycles and then low for 4 CLK24 cycles. Level-sensitive interrupts are not

EZ-USB TRM v1.9 Appendix C8051 Hardware Description

latched and must remain active until serviced.

C.4.4 Interrupt Latency

Interrupt response time depends on the current state of the 8051. The fastest response time is 5
instruction cycles: 1 to detect the interrupt, and 4 to perfornLALL to the ISR.

The maximum latency (13 instruction cycles) occurs when the 8051 is currently executing a
RET]I instruction followed by aMULor DIV instruction. The 13 instruction cycles in this case
are: 1 to detect the interrupt, 3 to complete RIE€TI, 5 to execute th®IV or MUL, and 4 to
execute the.CALL to the ISR. For the maximum latency case, the response time is 13 x4 =
52 CLK24 cycles.

C.4.5 Single-Step Operation

The 8051 interrupt structure provides a way to perform single-step program execution. When
exiting an ISR with arRETI instruction, the 8051 will always execute at least one instruction
of the task program. Therefore, once an ISR is entered, it cannot be re-entered until at least
one program instruction is executed.

To perform single-step execution, program one of the external interrupts (for example,INTO)
to be level-sensitive and write an ISR for that interrupt the terminates as follows:

JNB TCON.1,$; wait for high on INTO# pin
JB TCON.1,$; wait for low on INTO# pin
RETI ; return for ISR

The CPU enters the ISR when the INTO# pin goes low, then waits for a pulse on INTO#. Each
time INTO# is pulsed, the CPU exits the ISR, executes one program instruction, then re-enters
the ISR.

C5 Reset

The 8051 RESET pin is internally connected to an EZ-USB register bit that is controllable
through the USB host. See Chapter 10, "EZ-USB Resets" for details.

C.6 Power Saving Modes

C.6.1 Idle Mode

An instruction that sets the IDLE bit (PCON.0) causes the 8051 to enter idle mode when that
instruction completes. In idle mode, CPU processing is suspended, and internal registers
maintain their current data. When the 8051 core is in idle, the EZ-USB core enters suspend

C-36 Appendix C8051 Hardware Description EZ-USB TRM v1.9

mode and shuts down the 24 MHz oscillator. See Chapter 11, "EZ-USB Power Management"
for a full description of the Suspend/Resume process.

Table C-20. PCON Register - SFR 87h

Bit Function

PCON.7 SMODO - Serial Port 0 baud rate double enable. When

SMODO = 1, the baud rate for Serial Port 0 is doubled.
PCON.6-4 Reserved.

PCON.3 GF1 - General purpose flag 1. Bit-addressable, general
purpose flag for software control.

PCON.2 GFO - General purpose flag 0. Bit-addressable, general
purpose flag for software control.

PCON.1 This bit should always be set to 0.

PCON.O IDLE - Idle mode select. Setting the IDLE bit places the

8051 in idle mode.

EZ-USB TRM v1.9 Appendix C8051 Hardware Description C-37

Appendix C8051 Hardware Description

EZ-USB TRM v1.9

	EZ-USB TRM Cover Page
	Cypress Disclaimer
	Master TOC
	EZ-USB Technical Reference
	Table of Contents
	Figures
	Tables
	1 Introducing EZ-USB
	1.1 Introduction
	1.2 EZ-USB Block Diagrams
	1.3 The USB Specification
	1.4 Tokens and PIDs
	1.5 Host is Master
	1.5.1 Receiving Data from the Host
	1.5.2 Sending Data to the Host

	1.6 USB Direction
	1.7 Frame
	1.8 EZ-USB Transfer Types
	1.8.1 Bulk Transfers
	1.8.2 Interrupt Transfers
	1.8.3 Isochronous Transfers
	1.8.4 Control Transfers

	1.9 Enumeration
	1.10 The USB Core
	1.11 EZ-USB Microprocessor
	1.12 ReNumeration‘
	1.13 EZ-USB Endpoints
	1.13.1 EZ-USB Bulk Endpoints
	1.13.2 EZ-USB Control Endpoint Zero
	1.13.3 EZ-USB Interrupt Endpoints
	1.13.4 EZ-USB Isochronous Endpoints

	1.14 Fast Transfer Modes
	1.15 Interrupts
	1.16 Reset and Power Management
	1.17 EZ-USB Product Family
	1.18 Summary of AN2122, AN2126 Features
	1.19 Revision ID
	1.20 Pin Descriptions

	2 EZ-USB CPU
	2.1 Introduction
	2.2 8051 Enhancements
	2.3 EZ-USB Enhancements
	2.4 EZ-USB Register Interface
	2.5 EZ-USB Internal RAM
	2.6 I/O Ports
	2.7 Interrupts
	2.8 Power Control
	2.9 SFRs
	2.10 Internal Bus
	2.11 Reset

	3 EZ-USB Memory
	3.1 Introduction
	3.2 8051 Memory
	3.3 Expanding EZ-USB Memory
	3.4 CS# and OE# Signals
	3.5 EZ-USB ROM Versions

	4 EZ-USB Input/Output
	4.1 Introduction
	4.2 IO Ports
	4.3 IO Port Registers
	4.4 I2C Controller
	4.5 8051 I2C Controller
	4.6 Control Bits
	4.6.1 START
	4.6.2 STOP
	4.6.3 LASTRD

	4.7 Status Bits
	4.7.1 DONE
	4.7.2 ACK
	4.7.3 BERR
	4.7.4 ID1, ID0

	4.8 Sending I2C Data
	4.9 Receiving I2C Data
	4.10 I2C Boot Loader

	5 EZ-USB Enumeration and ReNumeration‘
	5.1 Introduction
	5.2 The Default USB Device
	5.3 EZ-USB Core Response to EP0 Device Requests
	5.4 Firmware Load
	5.5 Enumeration Modes
	5.6 No Serial EEPROM
	5.7 Serial EEPROM Present, First Byte is 0xB0
	5.8 Serial EEPROM Present, First Byte is 0xB2
	5.9 ReNumeration‘
	5.10 Multiple ReNumerations‘
	5.11 Default Descriptor

	6 EZ-USB Bulk Transfers
	6.1 Introduction
	6.2 Bulk IN Transfers
	6.3 Interrupt Transfers
	6.4 EZ-USB Bulk IN Example
	6.5 Bulk OUT Transfers
	6.6 Endpoint Pairing
	6.7 Paired IN Endpoint Status
	6.8 Paired OUT Endpoint Status
	6.9 Using Bulk Buffer Memory
	6.10 Data Toggle Control
	6.11 Polled Bulk Transfer Example
	6.12 Enumeration Note
	6.13 Bulk Endpoint Interrupts
	6.14 Interrupt Bulk Transfer Example
	6.15 Enumeration Note
	6.16 The Autopointer

	7 EZ-USB Endpoint Zero
	7.1 Introduction
	7.2 Control Endpoint EP0
	7.3 USB Requests
	7.3.1 Get Status
	7.3.2 Set Feature
	7.3.3 Clear Feature
	7.3.4 Get Descriptor
	7.3.4.1 Get Descriptor-Device
	7.3.4.2 Get Descriptor-Configuration
	7.3.4.3 Get Descriptor-String

	7.3.5 Set Descriptor
	7.3.6 Set Configuration
	7.3.7 Get Configuration
	7.3.8 Set Interface
	7.3.9 Get Interface
	7.3.10 Set Address
	7.3.11 Sync Frame
	7.3.12 Firmware Load

	8 EZ-USB Isochronous Transfers
	8.1 Introduction
	8.2 Isochronous IN Transfers
	8.2.1 Initialization
	8.2.2 IN Data Transfers

	8.3 Isochronous OUT Transfers
	8.3.1 Initialization
	8.3.2 OUT Data Transfer

	8.4 Setting Isochronous FIFO Sizes
	8.5 Isochronous Transfer Speed
	8.6 Fast Transfers
	8.6.1 Fast Writes
	8.6.2 Fast Reads

	8.7 Fast Transfer Timing
	8.7.1 Fast Write Waveforms
	8.7.2 Fast Read Waveforms

	8.8 Fast Transfer Speed
	8.9 Other Isochronous Registers
	8.9.1 Disable ISO
	8.9.2 Zero Byte Count Bits

	8.10 ISO IN Response with No Data
	8.11 Using the Isochronous FIFOs

	9 EZ-USB Interrupts
	9.1 Introduction
	9.2 USB Core Interrupts
	9.3 Wakeup Interrupt
	9.4 USB Signaling Interrupts
	9.5 SUTOK, SUDAV Interrupts
	9.6 SOF Interrupt
	9.7 Suspend Interrupt
	9.8 USB RESET Interrupt
	9.9 Bulk Endpoint Interrupts
	9.10 USB Autovectors
	9.11 Autovector Coding
	9.12 I2C Interrupt
	9.13 In Bulk NAK Interrupt - (AN2122/AN2126 only)
	9.14 I2C STOP Complete Interrupt - (AN2122/AN2126 only)

	10 EZ-USB Resets
	10.1 Introduction
	10.2 EZ-USB Power-On Reset (POR)
	10.3 Releasing the 8051 Reset
	10.3.1 RAM Download
	10.3.2 EEPROM Load
	10.3.3 External ROM

	10.4 8051 Reset Effects
	10.5 USB Bus Reset
	10.6 EZ-USB Disconnect
	10.7 Reset Summary

	11 EZ-USB Power Management
	11.1 Introduction
	11.2 Suspend
	11.3 Resume
	11.4 Remote Wakeup

	12 EZ-USB Registers
	12.1 Introduction
	12.2 Bulk Data Buffers
	12.3 Isochronous Data FIFOs
	12.4 Isochronous Byte Counts
	12.5 CPU Registers
	12.6 Port Configuration
	12.7 Input-Output Port Registers
	12.8 230-Kbaud UART Operation - AN2122, AN2126
	12.9 Isochronous Control/Status Registers
	12.10 I2C Registers
	12.11 Interrupts
	12.12 Endpoint 0 Control and Status Registers
	12.13 Endpoint 1-7 Control and Status Registers
	12.14 Global USB Registers
	12.15 Fast Transfers
	12.16 SETUP Data
	12.17 Isochronous FIFO Sizes

	13 EZ-USB AC/DC Parameters
	13.1 Electrical Characteristics
	13.1.1 Absolute Maximum Ratings
	13.1.2 Operating Conditions
	13.1.3 DC Characteristics
	13.1.4 AC Electrical Characteristics
	13.1.5 General Memory Timing
	13.1.6 Program Memory Read
	13.1.7 Data Memory Read
	13.1.8 Data Memory Write
	13.1.9 Fast Data Write
	13.1.10 Fast Data Read

	14 EZ-USB Packaging
	14.1 44-Pin PQFP Package
	14.2 80-Pin PQFP Package
	14.3 48-Pin TQFP Package

	Appendices
	Appendix A: 8051 Introduction
	A.1 Introduction
	A.2 8051 Features
	A.3 Performance Overview
	A.4 Software Compatibility
	A.5 803x/805x Feature Comparison
	A.6 8051 Core/DS80C320 Differences
	A.6.1 Serial Ports
	A.6.2 Timer 2
	A.6.3 Timed Access Protection
	A.6.4 Watchdog Timer

	Appendix B: 8051 Architectural Overview
	B.1 Introduction
	B.1.1 Memory Organization
	B.1.1.1 Program Memory
	B.1.1.2 External RAM
	B.1.1.3 Internal RAM

	B.1.2 Instruction Set
	B.1.3 Instruction Timing
	B.1.4 CPU Timing
	B.1.5 Stretch Memory Cycles (Wait States)
	B.1.6 Dual Data Pointers
	B.1.7 Special Function Registers

	Appendix C: 8051 Hardware Description
	C.1 Introduction
	C.2 Timers/Counters
	C.2.1 803x/805x Compatibility
	C.2.2 Timers 0 and 1
	C.2.3 Mode 0
	C.2.4 Mode 1
	C.2.5 Mode 2
	C.2.6 Mode 3
	C.2.7 Timer Rate Control
	C.2.8 Timer 2
	C.2.8.1 Timer 2 Mode Control
	C.2.8.2 16-Bit Timer/Counter Mode
	C.2.8.3 6-Bit Timer/Counter Mode with Capture
	C.2.8.4 16-Bit Timer/Counter Mode with Auto-Reload
	C.2.8.5 Baud Rate Generator Mode

	C.3 Serial Interface
	C.3.1 803x/805x Compatibility
	C.3.2 Mode 0
	C.3.3 Mode 1
	C.3.3.1 Mode 1 Baud Rate
	C.3.3.2 Mode 1 Transmit
	C.3.3.3 Mode 1 Receive

	C.3.4 Mode 2
	C.3.4.1 Mode 2 Transmit
	C.3.4.2 Mode 2 Receive

	C.3.5 Mode 3
	C.3.6 Multiprocessor Communications
	C.3.7 Interrupt SFRs

	C.4 Interrupt Processing
	C.4.1 Interrupt Masking
	C.4.2 Interrupt Priorities
	C.4.3 Interrupt Sampling
	C.4.4 Interrupt Latency
	C.4.5 Single-Step Operation

	C.5 Reset
	C.6 Power Saving Modes
	C.6.1 Idle Mode

	Register Summary

