

LSM303DLHC

Datasheet - production data

Ultra-compact high-performance eCompass module: 3D accelerometer and 3D magnetometer

LGA-14 (3x5x1mm)

Features

- 3 magnetic field channels and 3 acceleration channels
- From ±1.3 to ±8.1 gauss magnetic field full scale
- ±2g/±4g/±8g/±16g linear acceleration full scale
- 16-bit data output
- I²C serial interface
- Analog supply voltage 2.16 V to 3.6 V
- Power-down mode / low-power mode
- 2 independent programmable interrupt generators for free-fall and motion detection
- Embedded temperature sensor
- Embedded FIFO
- 6D/4D-orientation detection
- ECOPACK[®] RoHS and "Green" compliant

Applications

- Tilt-compensated compasses
- Map rotation
- Position detection
- Motion-activated functions
- Free-fall detection
- Click/double-click recognition
- Pedometers
- · Intelligent power-saving for handheld devices

November 2013

DocID018771 Rev 2

This is information on a product in full production.

- Display orientation
- Gaming and virtual reality input devices
- Impact recognition and logging
- Vibration monitoring and compensation

Description

The LSM303DLHC is a system-in-package featuring a 3D digital linear acceleration sensor and a 3D digital magnetic sensor.

The LSM303DLHC has linear acceleration full scales of $\pm 2g / \pm 4g / \pm 8g / \pm 16g$ and a magnetic field full scale of $\pm 1.3 / \pm 1.9 / \pm 2.5 / \pm 4.0 / \pm 4.7 / \pm 5.6 / \pm 8.1$ gauss.

The LSM303DLHC includes an I²C serial bus interface that supports standard and fast mode 100 kHz and 400 kHz. The system can be configured to generate interrupt signals by inertial wake-up/free-fall events as well as by the position of the device itself. Thresholds and timing of interrupt generators are programmable by the end user. Magnetic and accelerometer blocks can be enabled or put into power-down mode separately.

The LSM303DLHC is available in a plastic land grid array package (LGA) and is guaranteed to operate over an extended temperature range from -40 $^{\circ}$ C to +85 $^{\circ}$ C.

Part number	Temperature range [°C]	Package	Packing
LSM303DLHC	-40 to +85	LGA-14	Tray
LSM303DLHCTR	-40 to +85	LGA-14	Tape and reel

1/42

Contents

1	Block	diagram and pin description8
	1.1	Block diagram
	1.2	Pin description
2	Modu	le specifications
	2.1	Sensor characteristics 10
	2.2	Temperature sensor characteristics 11
	2.3	Electrical characteristics 12
	2.4	Communication interfaces characteristics
		2.4.1 Sensor I^2C - inter IC control interface
	2.5	Absolute maximum ratings 14
	2.6	Terminology
		2.6.1 Linear acceleration sensitivity
		2.6.2 Zero-g level
3	Funct	ionality
	3.1	Factory calibration
4	Applie	cation hints
	4.1	Capacitors
	4.2	Pull-up resistors
	4.3	Digital interface power supply
	4.4	Soldering information
	4.5	High-current wiring effects
5	Digita	l interfaces
	5.1	I ² C serial interface
		5.1.1 I ² C operation
		5.1.2 Linear acceleration digital interface
		5.1.3 Magnetic field digital interface
6	Regis	ter mapping

7	Regis	ter des	cription	25
	7.1	Linear a	cceleration register description	25
		7.1.1	CTRL_REG1_A (20h)	. 25
		7.1.2	CTRL_REG2_A (21h)	. 26
		7.1.3	CTRL_REG3_A (22h)	. 26
		7.1.4	CTRL_REG4_A (23h)	. 27
		7.1.5	CTRL_REG5_A (24h)	. 27
		7.1.6	CTRL_REG6_A (25h)	. 28
		7.1.7	REFERENCE_A (26h)	. 28
		7.1.8	STATUS_REG_A (27h)	. 28
		7.1.9	OUT_X_L_A (28h), OUT_X_H_A (29h)	. 29
		7.1.10	OUT_Y_L_A (2Ah), OUT_Y_H_A (2Bh)	. 29
		7.1.11	OUT_Z_L_A (2Ch), OUT_Z_H_A (2Dh)	. 29
		7.1.12	FIFO_CTRL_REG_A (2Eh)	. 29
		7.1.13	FIFO_SRC_REG_A (2Fh)	. 30
		7.1.14	INT1_CFG_A (30h)	. 30
		7.1.15	INT1_SRC_A (31h)	. 31
		7.1.16	INT1_THS_A (32h)	. 32
		7.1.17	INT1_DURATION_A (33h)	. 32
		7.1.18	INT2_CFG_A (34h)	. 32
		7.1.19	INT2_SRC_A (35h)	. 33
		7.1.20	INT2_THS_A (36h)	. 34
		7.1.21	INT2_DURATION_A (37h)	. 34
		7.1.22	CLICK_CFG_A (38h)	. 35
		7.1.23	CLICK_SRC_A (39h)	35
		7.1.24	CLICK_THS_A (3Ah)	. 36
		7.1.25	TIME_LIMIT_A (3Bh)	. 36
		7.1.26	TIME_LATENCY_A (3Ch)	. 36
		7.1.27	TIME_WINDOW_A (3Dh)	. 37
	7.2	Magneti	c field sensing register description	37
		7.2.1	CRA_REG_M (00h)	. 37
		7.2.2	CRB_REG_M (01h)	. 38
		7.2.3	MR_REG_M (02h)	. 38
		7.2.4	OUT_X_H_M (03), OUT_X_L_M (04h)	. 39
		7.2.5	OUT_Z_H_M (05), OUT_Z_L_M (06h)	. 39
		7.2.6	OUT_Y_H_M (07), OUT_Y_L_M (08h)	. 39
		7.2.7	SR_REG_M (09h)	. 39

9	Revision hist	ory	41
8	Package info	rmation	40
		TEMP_OUT_H_M (31h), TEMP_OUT_L_M (32h)	
	7.2.8	IRx REG M (0Ah/0Bh/0Ch)	39

List of tables

Table 1.	Device summary	. 1
Table 2.	Pin description	. 9
Table 3.	Sensor characteristics.	10
Table 4.	Temperature sensor characteristics	11
Table 5.	Electrical characteristics	12
Table 6.	I ² C slave timing values	
Table 7.	Absolute maximum ratings	
Table 8.	Accelerometer operating mode selection	
Table 9.	Serial interface pin description	
Table 10.	Serial interface pin description	
Table 11.	Transfer when master is writing one byte to slave	
Table 12.	Transfer when master is writing multiple bytes to slave:	
Table 13.	Transfer when master is receiving (reading) one byte of data from slave:	
Table 14.	SAD+Read/Write patterns	
Table 14.	Transfer when master is receiving (reading) multiple bytes of data from slave	
Table 15.	SAD	
Table 10. Table 17.	Register address map.	
Table 17. Table 18.	•	
	CTRL_REG1_A register	
Table 19.	CTRL_REG1_A description	
Table 20.		
Table 21.	CTRL_REG2_A register	
Table 22.	CTRL_REG2_A description	
Table 23.	High-pass filter mode configuration	
Table 24.	CTRL_REG3_A register	
Table 25.	CTRL_REG3_A description	
Table 26.	CTRL_REG4_A register	
Table 27.	CTRL_REG4_A description	
Table 28.	CTRL_REG5_A register	
Table 29.	CTRL_REG5_A description	
Table 30.	CTRL_REG6_A register	28
Table 31.	CTRL_REG6_A description	28
Table 32.	REFERENCE_A register	28
Table 33.	REFERENCE_A register description	28
Table 34.	STATUS_A register	
Table 35.	STATUS_A register description	
Table 36.	FIFO_CTRL_REG_A register	
Table 37.	FIFO_CTRL_REG_A description	
Table 38.	FIFO mode configuration	
Table 39.	FIFO_SRC_REG_A register	30
Table 40.	INT1_CFG_A register	
Table 41.	INT1_CFG_A description	
Table 42.	Interrupt mode	
Table 43.	INT1_SRC_A register	
Table 44.	INT1_SRC_A description	
Table 45.	INT1_THS_A register	
Table 46.	INT1_THS_A description	
Table 40.	INT1_DURATION_A register	
Table 47. Table 48.	INT1_DURATION_A description.	
		<u> </u>

Table 49.	INT2_CFG_A register
Table 50.	INT2_CFG_A description
Table 51.	Interrupt mode
Table 52.	INT2_SRC_A register
Table 53.	INT2_SRC_A description
Table 54.	INT2_THS_A register
Table 55.	INT2_THS_A description
Table 56.	INT2_DURATION_A register
Table 57.	INT2_DURATION_A description
Table 58.	CLICK_CFG_A register
Table 59.	CLICK_CFG_A description
Table 60.	CLICK_SRC_A register
Table 61.	CLICK_SRC_A description
Table 62.	CLICK_THS_A register
Table 63.	CLICK_SRC_A description
Table 64.	TIME_LIMIT_A register
Table 65.	TIME_LIMIT_A description
Table 66.	TIME_LATENCY_A register
Table 67.	TIME_LATENCY_A description
Table 68.	TIME_WINDOW_A register
Table 69.	TIME_WINDOW_A description
Table 70.	CRA_REG_M register
Table 71.	CRA_REG_M description
Table 72.	Data rate configurations
Table 73.	CRB_REG_M register
Table 74.	CRB_REG_M description
Table 75.	Gain setting
Table 76.	MR_REG_M register
Table 77.	MR_REG_M description
Table 78.	Magnetic sensor operating mode
Table 79.	SR_REG_M register
Table 80.	SR_REG_M description
Table 81.	IRA_REG_M register
Table 82.	IRB_REG_M register
Table 83.	IRC_REG_M register
Table 84.	TEMP_OUT_H_M register
Table 85.	TEMP_OUT_L_M register
Table 86.	TEMP_OUT resolution
Table 87.	Document revision history

List of figures

Figure 1.	Block diagram	8
	Pin connections	
Figure 3.	I ² C slave timing diagram1	3
Figure 4.	LSM303DLHC electrical connections	7
Figure 5.	LGA-14: mechanical data and package dimensions	0

1 Block diagram and pin description

1.1 Block diagram

Figure 1. Block diagram

1.2 Pin description

Figure 2. Pin connections

Table 2. Pin description

Pin#	Name	Function	
1	Vdd_IO	Power supply for I/O pins	
2	SCL	Signal interface I ² C serial clock (SCL)	
3	SDA	Signal interface I ² C serial data (SDA)	
4	INT2	Inertial interrupt 2	
5	INT1	Inertial interrupt 1	
6	C1	C1 Reserved capacitor connection (C1)	
7	GND	0 V supply	
8	Reserved	Leave unconnected	
9	DRDY Data ready		
10	Reserved	Connect to GND	
11	Reserved	Connect to GND	
12	SETP	S/R capacitor connection (C2)	
13	SETC	S/R capacitor connection (C2)	
14	Vdd	ower supply	

2 Module specifications

2.1 Sensor characteristics

@ Vdd = 2.5 V, T = 25 °C unless otherwise noted^(a).

Symbol	Parameter	Test conditions	Min.	Тур. ⁽¹⁾	Max.	Unit
		FS bit set to 00		±2		
LA FS	Linear acceleration	FS bit set to 01		±4		g
LA_F5	measurement range ⁽²⁾	FS bit set to 10		±8		
		FS bit set to 11		±16		_
		GN bits set to 001		±1.3		
		GN bits set to 010		±1.9		-
		GN bits set to 011		±2.5		_
M_FS	Magnetic measurement range	GN bits set to 100		±4.0		gauss
		GN bits set to 101		±4.7		-
		GN bits set to 110		±5.6		-
		GN bits set to 111		±8.1		_
		FS bit set to 00		1		
		FS bit set to 01		2		
LA_So	Linear acceleration sensitivity	FS bit set to 10 4		- mg/LSB		
		FS bit set to 11		12		1
		GN bits set to 001 (X,Y)		1100		
		GN bits set to 001 (Z)		980		
		GN bits set to 010 (X,Y)		855		
		GN bits set to 010 (Z)		760		
		GN bits set to 011 (X,Y)		670		
		GN bits set to 011 (Z)		600		
M GN	Magnetic gain setting	GN bits set to 100 (X,Y)		450		LSB/
M_GN		GN bits set to 100 (Z)		400		gauss
		GN bits set to 101 (X,Y)		400		1
		GN bits set to 101 (Z)		355		
		GN bits set to 110 (X,Y)		330]
		GN bits set to 110 (Z)		295		1
		GN bits set to 111 ⁽²⁾ (X,Y)		230]
		GN bits set to 111 ⁽²⁾ (Z)		205		1

Table 3.	Sensor	characteristics
----------	--------	-----------------

a. The product is factory calibrated at 2.5 V. The operational power supply range is from 2.16 V to 3.6 V.

Symbol	Parameter	Test conditions	Min.	Typ. ⁽¹⁾	Max.	Unit
LA_TCSo	Linear acceleration sensitivity change vs. temperature	FS bit set to 00		±0.01		%/°C
LA_TyOff	Linear acceleration typical Zero- <i>g</i> level offset accuracy ^{(3),(4)}	FS bit set to 00		±60		mg
LA_TCOff	Linear acceleration Zero- <i>g</i> level change vs. temperature	Max delta from 25 °C		±0.5		mg/°C
LA_An	Acceleration noise density	FS bit set to 00, normal mode(<i>Table 8.</i>), ODR bit set to 1001		220		ug∕(√Hz)
M_R	Magnetic resolution			2		mgauss
M_CAS	Magnetic cross-axis sensitivity	Cross field = 0.5 gauss H applied = ±3 gauss		±1		%FS/ gauss
M_EF	Maximum exposed field	No permanent effect on sensor performance			10000	gauss
M_DF	Magnetic disturbance field	Sensitivity starts to degrade. Use S/R pulse to restore sensitivity			20	gauss
Тор	Operating temperature range		-40		+85	°C

Table 3. Sensor characteristics (continued)

1. Typical specifications are not guaranteed.

2. Verified by wafer level test and measurement of initial offset and sensitivity.

3. Typical Zero-g level offset value after MSL3 preconditioning.

4. Offset can be eliminated by enabling the built-in high-pass filter.

2.2 Temperature sensor characteristics

@ Vdd = 2.5 V, T = 25 °C unless otherwise noted ^(b).

Symbol	Parameter	Test condition	Min.	Тур. ⁽¹⁾	Max.	Unit
TSDr	Temperature sensor output change vs. temperature			8		LSB/°C ⁽²⁾
TODR	Temperature refresh rate	-		ODR ⁽³⁾		Hz
Тор	Operating temperature range		-40		+85	°C

Table 4. Temperature sensor characteristics

1. Typical specifications are not guaranteed.

2. 12-bit resolution.

3. For ODR configuration refer to Table 72.

b. The product is factory calibrated at 2.5 V.

2.3 Electrical characteristics

@ Vdd = 2.5 V, T = 25 $^{\circ}$ C unless otherwise noted.

Symbol	Parameter	Test conditions	Min.	Тур. ⁽¹⁾	Max.	Unit
Vdd	Supply voltage		2.16		3.6	V
Vdd_IO	Module power supply for I/O		1.71	1.8	Vdd+0.1	
ldd	Current consumption in normal mode ⁽²⁾	-		110		μA
IddSL	Current consumption in sleep-mode ⁽³⁾			1		μA
Тор	Operating temperature range		-40		+85	°C

Table 5. Electrical characteristics

1. Typical specifications are not guaranteed.

2. Magnetic sensor setting ODR = 7.5 Hz, Accelerometer sensor ODR = 50 Hz.

3. Linear accelerometer in sleep-mode and magnetic sensor in power-down mode.

2.4 Communication interfaces characteristics

External pull-up resistors are required to support I²C standard and fast speed modes.

2.4.1 Sensor I²C - inter IC control interface

Subject to general operating conditions for Vdd and Top.

Cumb of	Dovomotor	I ² C standa	ard mode ⁽¹⁾	I ² C fast r	node ⁽¹⁾	— Unit	
Symbol	Parameter	Min. Max.		Min. Max.			
f _(SCL)	SCL clock frequency	0	100	0	400	kHz	
t _{w(SCLL)}	SCL clock low time	4.7		1.3			
t _{w(SCLH)}	SCL clock high time	4.0		0.6		— µs	
t _{su(SDA)}	t _{su(SDA)} SDA setup time			100		ns	
t _{h(SDA)}	t _{h(SDA)} SDA data hold time		3.45	0.01	0.9	μs	
$t_{r(SDA)} t_{r(SCL)}$	SDA and SCL rise time		1000	$20 + 0.1 C_{b}^{(2)}$	300		
$t_{f(SDA)}t_{f(SCL)}$	SDA and SCL fall time		300	20 + 0.1C _b ⁽²⁾	300	ns	
t _{h(ST)}	START condition hold time	4		0.6			
t _{su(SR)}	Repeated START condition setup time	4.7		0.6			
t _{su(SP)}	STOP condition setup time	4		0.6		— μs	
t _{w(SP:SR)}	Bus free time between STOP and START condition	4.7		1.3			

Table	6. I ² C	slave	timing	values
-------	---------------------	-------	--------	--------

1. Data based on standard I^2C protocol requirement, not tested in production.

2. C_b = total capacitance of one bus line, in pF.

Figure 3. I²C slave timing diagram

Note: Measurement points are done at 0.2 · Vdd_IO and 0.8 · Vdd_IO, for both ports.

2.5 Absolute maximum ratings

Stresses above those listed as "absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Ratings	Maximum value	Unit
Vdd	Supply voltage	-0.3 to 4.8	V
Vdd_IO	I/O pins supply voltage	-0.3 to 4.8	V
Vin	Input voltage on any control pin (SCL, SDA)	-0.3 to Vdd_IO +0.3	V
	Acceleration (any axis, newcrod,)/dd = 2.5)()	3,000 for 0.5 ms	g
A _{POW}	Acceleration (any axis, powered, Vdd = 2.5 V)	10,000 for 0.1 ms	g
_	Acceleration (any axis, upnoward)	3,000 for 0.5 ms	g
A _{UNP}	Acceleration (any axis, unpowered)	10,000 for 0.1 ms	g
T _{OP}	Operating temperature range	-40 to +85	°C
T _{STG}	Storage temperature range	-40 to +125	°C
ESD	Electrostatic discharge protection	2 (HBM)	kV

Table 7. Absolute maximum ratings

This device is sensitive to mechanical shock, improper handling can cause permanent damage to the part.

This device is sensitive to electrostatic discharge (ESD), improper handling can cause permanent damage to the part.

2.6 Terminology

2.6.1 Linear acceleration sensitivity

Linear acceleration sensitivity describes the gain of the accelerometer sensor and can be determined by applying 1 g acceleration to it. As the sensor can measure DC accelerations, this can be done easily by pointing the axis of interest towards the center of the Earth, noting the output value, rotating the sensor by 180 degrees (pointing to the sky) and noting the output value again. By doing so, $\pm 1 g$ acceleration is applied to the sensor. Subtracting the larger output value from the smaller one, and dividing the result by 2, leads to the actual sensitivity of the sensor. This value changes very little over temperature and also very little over time. The sensitivity tolerance describes the range of sensitivities of a large population of sensors.

2.6.2 Zero-g level

Zero-*g* level offset (TyOff) describes the deviation of an actual output signal from the ideal output signal if no acceleration is present. A sensor in a steady-state on a horizontal surface measures 0 *g* on the X axis and 0 *g* on the Y axis whereas the Z axis measures 1 *g*. The output is ideally in the middle of the dynamic range of the sensor (content of OUT registers 00h, data expressed as two's complement number). A deviation from the ideal value in this case is called Zero-*g* offset. Offset is, to some extent, a result of stress to the MEMS sensor and therefore the offset can slightly change after mounting the sensor onto a printed circuit board or exposing it to extensive mechanical stress. Offset changes little over temperature, see "Zero-*g* level change vs. temperature". The Zero-*g* level tolerance (TyOff) describes the standard deviation of the range of Zero-*g* levels of a population of sensors.

3 Functionality

The LSM303DLHC is a system-in-package featuring a 3D digital linear acceleration and 3D digital magnetic field detection sensor.

The system includes specific sensing elements and an IC interface capable of measuring both the linear acceleration and magnetic field applied to it and providing a signal to the external world through an I^2C serial interface with separated digital output.

The sensing system is manufactured using specialized micromachining processes, while the IC interfaces are manufactured using CMOS technology that allows designing a dedicated circuit which is trimmed to better match the sensing element characteristics.

The LSM303DLHC features two data-ready signals (RDY) which indicate when a new set of measured acceleration data and magnetic data are available, therefore simplifying data synchronization in the digital system that uses the device.

The LSM303DLHC may also be configured to generate a free-fall interrupt signal according to a programmed acceleration event along the enabled axes.

Linear acceleration operating mode

The LSM303DLHC provides two different acceleration operating modes: "normal mode" and "low-power mode". While normal mode guarantees high resolution, low-power mode further reduces current consumption.

Table 8 summarizes how to select the operating mode.

Operating mode	CTRL_REG1[3] (LPen bit)	CTRL_REG4[3] (HR bit)	BW [Hz]	Turn-on time [ms]
Low-power mode	1	0	ODR/2	1
Normal mode	0	1	ODR/9	7/ODR

Table 8. Accelerometer operating mode selection

3.1 Factory calibration

The IC interface is factory calibrated for linear acceleration sensitivity (LA_So), and linear acceleration Zero-g level (LA_TyOff).

The trim values are stored inside the device in nonvolatile memory. Any time the device is turned on, the trimming parameters are downloaded into the registers to be used during normal operation. This allows the user to use the device without further calibration.

4 Application hints

Figure 4. LSM303DLHC electrical connections

4.1 Capacitors

The C1 and C2 external capacitors should be low SR value ceramic type constructions (typ. recommended value 200 mOhm). Reservoir capacitor C1 is nominally 4.7 μ F in capacitance, with the set/reset capacitor C2 nominally 0.22 μ F in capacitance.

The device core is supplied through the Vdd line. Power supply decoupling capacitors (C4 = 100 nF ceramic, C3 = 10 μ F AI) should be placed as near as possible to the supply pin of the device (common design practice). All the voltage and ground supplies must be present at the same time to have proper behavior of the IC (refer to *Figure 4*).

The functionality of the device and the measured acceleration/magnetic field data are selectable and accessible through the I^2C interface.

The functions, the threshold, and the timing of the two interrupt pins (INT1 and INT2) can be completely programmed by the user through the I^2C interface.

4.2 Pull-up resistors

Pull-up resistors (recommended value 10 kOhm) are placed on the two I²C bus lines.

4.3 Digital interface power supply

This digital interface, dedicated to the linear acceleration and to the magnetic field signal, is capable of operating with a standard power supply (Vdd) or using a dedicated power supply (Vdd_IO).

4.4 Soldering information

The LGA package is compliant with the ECOPACK[®], RoHS, and "Green" standard. It is qualified for soldering heat resistance according to JEDEC J-STD-020.

Leave "Pin 1 Indicator" unconnected during soldering.

Land pattern and soldering recommendations are available at www.st.com/mems.

4.5 High-current wiring effects

High current in the wiring and printed circuit traces can be culprits in causing errors in magnetic field measurements for compassing.

Conductor-generated magnetic fields add to the Earth's magnetic field, causing errors in compass-heading computation.

Keep currents higher than 10 mA a few millimeters further away from the sensor IC.

5 Digital interfaces

The registers embedded inside the LSM303DLHC are accessible through two separate I^2C serial interfaces, one for the accelerometer core and one for the magnetometer core.

Pin name	Pin description
SCL	I ² C serial clock (SCL)
SDA	I ² C serial data (SDA)

Table 9. Serial interface pi	in description
------------------------------	----------------

5.1 I²C serial interface

The LSM303DLHC I^2C is a bus slave. The I^2C is employed to write the data into the registers whose content can also be read back.

The relevant I²C terminology is given in the table below.

Term	Description				
Transmitter	The device which sends data to the bus				
Receiver	The device which receives data from the bus				
Master	The device which initiates a transfer, generates clock signals, and terminates a transfer				
Slave	The device addressed by the master				

There are two signals associated with the I²C bus, the serial clock line (SCL) and the serial data line (SDA). The latter is a bidirectional line used for sending and receiving the data to/from the interface.

5.1.1 I²C operation

The transaction on the bus is started through a START (ST) signal. A START condition is defined as a high-to-low transition on the data line while the SCL line is held high. After this has been transmitted by the master, the bus is considered busy. The next byte of data transmitted after the start condition contains the address of the slave in the first 7 bits and bit 8 tells whether the master is receiving data from the slave or transmitting data to the slave. When an address is sent, each device in the system compares the first seven bits after a start condition with its address. If they match, the device considers itself addressed by the master.

Data transfer with acknowledge is mandatory. The transmitter must release the SDA line during the acknowledge pulse. The receiver must then pull the data line low so that it remains stable low during the high period of the acknowledge clock pulse. A receiver which has been addressed is obliged to generate an acknowledge after each byte of data received.

The I²C embedded inside the LSM303DLHC behaves like a slave device and the following protocol must be adhered to. After the START condition (ST) a slave address is sent, once a slave acknowledge (SAK) has been returned, an 8-bit sub-address (SUB) is transmitted; the 7 LSBs represent the actual register address while the MSB enables address auto-increment. If the MSB of the SUB field is '1', the SUB (register address) is automatically increased to allow multiple data Read/Write.

[Master	ST	SAD + W		SUB		DATA		SP
	Slave			SAK		SAK		SAK	

Table 11. Transfer when master is writing one byte to slave

 Table 12. Transfer when master is writing multiple bytes to slave:

Master	ST	SAD + W		SUB		DATA		DATA		SP
Slave			SAK		SAK		SAK		SAK	

Table 13. Transfer when master is receiving (reading) one byte of data from slave:

Master	ST	SAD + W		SUB		SR	SAD + R			NMAK	SP
Slave			SAK		SAK			SAK	DATA		

Data are transmitted in byte format (DATA). Each data transfer contains 8 bits. The number of bytes transferred per transfer is unlimited. Data is transferred with the most significant bit (MSB) first. If a receiver can't receive another complete byte of data until it has performed some other function, it can hold the clock line SCL low to force the transmitter into a wait state. Data transfer only continues when the receiver is ready for another byte and releases the data line. If a slave receiver doesn't acknowledge the slave address (i.e. it is not able to receive because it is performing some real-time function) the data line must be left high by the slave. The master can then abort the transfer. A low-to-high transition on the SDA line while the SCL line is high is defined as a STOP condition. Each data transfer must be terminated by the generation of a STOP (SP) condition.

5.1.2 Linear acceleration digital interface

For linear acceleration the default (factory) 7-bit slave address is 0011001b.

The slave address is completed with a Read/Write bit. If the bit is '1' (read), a repeated START (SR) condition must be issued after the two sub-address bytes; if the bit is '0' (write) the master transmits to the slave with the direction unchanged. *Table 14* explains how the read/write bit pattern is composed, listing all the possible configurations.

Command	SAD[7:1]	R/W	SAD+R/W
Read	0011001	1	00110011 (33h)
Write	0011001	0	00110010 (32h)

In order to read multiple bytes, it is necessary to assert the most significant bit of the subaddress field. In other words, SUB(7) must be equal to 1 while SUB(6-0) represents the address of the first register to be read.

In the presented communication format, MAK is master acknowledge and NMAK is no master acknowledge.

Master	ST	SAD +W		SUB		SR	SAD +R			MAK		MAK		NMAK	SP	
Slave			SAK		SAK			SAK	DATA		DATA		DATA			

5.1.3 Magnetic field digital interface

For magnetic sensors the default (factory) 7-bit slave address is 0011110xb.

The slave address is completed with a Read/Write bit. If the bit is '1' (read), a repeated START (SR) condition must be issued after the two sub-address bytes. If the bit is '0' (write) the master transmits to the slave with the direction unchanged. *Table 16* explains how the SAD is composed.

Command	SAD[6:0]	R/W	SAD+R/W					
Read	0011110	1	00111101 (3Dh)					
Write	0011110	0	00111100 (3Ch)					

Table 16. SAD

Magnetic signal interface reading/writing

The interface uses an address pointer to indicate which register location is to be read from or written to. These pointer locations are sent from the master to this slave device and succeed the 7-bit address plus 1 bit Read/Write identifier.

To minimize the communication between the master and magnetic digital interface of LSM303DLHC, the address pointer updates automatically without master intervention.

This automatic address pointer update has two additional features. First, when address 12 or higher is accessed, the pointer updates to address 00, and secondly, when address 08 is reached, the pointer rolls back to address 03. Logically, the address pointer operation functions as shown below.

If (address pointer = 08) then the address pointer = 03

Or else, if (address pointer ≥ 12) then the address pointer = 0

Or else, (address pointer) = (address pointer) + 1

The address pointer value itself cannot be read via the I²C bus.

Any attempt to read an invalid address location returns 0, and any write to an invalid address location, or an undefined bit within a valid address location, is ignored by this device.

6 Register mapping

Table 17 provides a listing of the 8-bit registers embedded in the device and the corresponding addresses:

News	Slave	T	Registe	er address	Default	0
Name	address	Туре	Hex Binary		Default	Comment
Reserved (do not modify)	Table 14		00 - 1F			Reserved
CTRL_REG1_A	Table 14	rw	20	010 0000	00000111	
CTRL_REG2_A	Table 14	rw	21	010 0001	00000000	
CTRL_REG3_A	Table 14	rw	22	010 0010	00000000	
CTRL_REG4_A	Table 14	rw	23	010 0011	00000000	
CTRL_REG5_A	Table 14	rw	24	010 0100	00000000	
CTRL_REG6_A	Table 14	rw	25	010 0101	00000000	
REFERENCE_A	Table 14	rw	26	010 0110	00000000	
STATUS_REG_A	Table 14	r	27	010 0111	00000000	
OUT_X_L_A	Table 14	r	28	010 1000	output	
OUT_X_H_A	Table 14	r	29	010 1001	output	
OUT_Y_L_A	Table 14	r	2A	010 1010	output	
OUT_Y_H_A	Table 14	r	2B	010 1011	output	
OUT_Z_L_A	Table 14	r	2C	010 1100	output	
OUT_Z_H_A	Table 14	r	2D	010 1101	output	
FIFO_CTRL_REG_A	Table 14	rw	2E	010 1110	00000000	
FIFO_SRC_REG_A	Table 14	r	2F	010 1111		
INT1_CFG_A	Table 14	rw	30	011 0000	00000000	
INT1_SRC_A	Table 14	r	31	011 0001	00000000	
INT1_THS_A	Table 14	rw	32	011 0010	00000000	
INT1_DURATION_A	Table 14	rw	33	011 0011	00000000	
INT2_CFG_A	Table 14	rw	34	011 0100	00000000	
INT2_SRC_A	Table 14	r	35	011 0101	00000000	
INT2_THS_A	Table 14	rw	36	011 0110	00000000	
INT2_DURATION_A	Table 14	rw	37	011 0111	00000000	
CLICK_CFG_A	Table 14	rw	38	011 1000	00000000	
CLICK_SRC_A	Table 14	rw	39	011 1001	00000000	
CLICK_THS_A	Table 14	rw	3A	011 1010	00000000	

Table 17.	Register	address	man
	Negister	auuress	map

Table 17. Register address map (continued)							
Nome	Slave	Turne	Registe	r address	Default	Commont	
Name	address	Туре	Hex	Binary	Default	Comment	
TIME_LIMIT_A	Table 14	rw	3B	011 1011	00000000		
TIME_LATENCY_A	Table 14	rw	3C	011 1100	00000000		
TIME_WINDOW_A	Table 14	rw	3D	011 1101	00000000		
Reserved (do not modify)	Table 14		3E-3F			Reserved	
CRA_REG_M	Table 16	rw	00	00000000	0001000		
CRB_REG_M	Table 16	rw	01	00000001	0010000		
MR_REG_M	Table 16	rw	02	00000010	00000011		
OUT_X_H_M	Table 16	r	03	00000011	output		
OUT_X_L_M	Table 16	r	04	00000100	output		
OUT_Z_H_M	Table 16	r	05	00000101	output		
OUT_Z_L_M	Table 16	r	06	00000110	output		
OUT_Y_H_M	Table 16	r	07	00000111	output		
OUT_Y_L_M	Table 16	r	08	00001000	output		
SR_REG_M	Table 16	r	09	00001001	00000000		
IRA_REG_M	Table 16	r	0A	00001010	01001000		
IRB_REG_M	Table 16	r	0B	00001011	00110100		
IRC_REG_M	Table 16	r	0C	00001100	00110011		
Reserved (do not modify)	Table 16		0D-30			Reserved	
TEMP_OUT_H_M	Table 16		31	00000000	output		
TEMP_OUT_L_M	Table 16		32	00000000	output		
Reserved (do not modify)	Table 16		33-3A			Reserved	

Table 17.	Register	address	map ((continued)

Registers marked as "Reserved" must not be changed. Writing to these registers may cause permanent damage to the device.

The content of the registers that are loaded at boot should not be changed. They contain the factory calibrated values. Their content is automatically restored when the device is powered up.

7 Register description

The device contains a set of registers which are used to control its behavior and to retrieve acceleration data. The register address, made up of 7 bits, is used to identify them and to write the data through the serial interface.

7.1 Linear acceleration register description

7.1.1 CTRL_REG1_A (20h)

Table 18. CTRL_REG1_A register								
ODR3	ODR2	ODR1	ODR0	LPen	Zen	Yen	Xen	

Table 19. CTRL_REG1_A description

ODR[3:0]	Data rate selection. Default value: 0000 (0000: power-down, others: refer to <i>Table 20</i>)
LPen	Low-power mode enable. Default value: 0 (0: normal mode, 1: low-power mode)
Zen	Z-axis enable. Default value: 1 (0: Z-axis disabled, 1: Z-axis enabled)
Yen	Y-axis enable. Default value: 1 (0: Y-axis disabled, 1: Y-axis enabled)
Xen	X-axis enable. Default value: 1 (0: X-axis disabled, 1: X-axis enabled)

ODR[3:0] is used to set the power mode and ODR selection. In the following table bit selection of ODR [3:0] for all frequencies is shown.

ODR3	ODR2	ODR1	ODR0	Power mode and ODR selection
0	0	0	0	Power-down mode
0	0	0	1	Normal / low-power mode (1 Hz)
0	0	1	0	Normal / low-power mode (10 Hz)
0	0	1	1	Normal / low-power mode (25 Hz)
0	1	0	0	Normal / low-power mode (50 Hz)
0	1	0	1	Normal / low-power mode (100 Hz)
0	1	1	0	Normal / low-power mode (200 Hz)
0	1	1	1	Normal / low-power mode (400 Hz)
1	0	0	0	Low-power mode (1.620 kHz)
1	0	0	1	Normal (1.344 kHz) / low-power mode (5.376 kHz)

Table 20. Data rate configuration

7.1.2 CTRL_REG2_A (21h)

Table	21.	CTRL	REG2	A reai	ster

HPM1 HPM0 HPCF2 HPCF1	FDS HPCLICK	HPIS2	HPIS1
-----------------------	-------------	-------	-------

Table 22. CTRL_REG2_A description

HPM[1:0]	High-pass filter mode selection. Default value: 00 (refer to <i>Table 23</i>)
HPCF[2:1]	High-pass filter cutoff frequency selection
FDS	Filtered data selection. Default value: 0 (0: internal filter bypassed, 1: data from internal filter sent to output register and FIFO)
HPCLICK	High-pass filter enabled for click function (0: filter bypassed, 1: filter enabled)
HPIS2	High-pass filter enabled for AOI function on Interrupt 2 (0: filter bypassed, 1: filter enabled)
HPIS1	High-pass filter enabled for AOI function on Interrupt 1 (0: filter bypassed, 1: filter enabled)

Table 23. High-pass filter mode configuration

HPM1	HPM0	High-pass filter mode		
0	0	Normal mode (reset reading HP_RESET_FILTER)		
0	1	Reference signal for filtering		
1	0	Normal mode		
1	1	Autoreset on interrupt event		

7.1.3 CTRL_REG3_A (22h)

Table 24. CTRL_REG3_A register

I1_CLICK	I1_AOI1	I1_AOI2	I1_DRDY1	I1_DRDY2	I1_WTM	I1_OVERRUN	

Table 25. CTRL_REG3_A description

I1_CLICK	CLICK interrupt on INT1. Default value 0 (0: disable, 1: enable)
	AOI1 interrupt on INT1. Default value 0 (0: disable, 1: enable)
I1_AOI2	AOI2 interrupt on INT1. Default value 0 (0: disable, 1: enable)

I1_DRDY1	DRDY1 interrupt on INT1. Default value 0 (0: disable, 1: enable)
I1_DRDY2	DRDY2 interrupt on INT1. Default value 0 (0: disable, 1: enable)
I1_WTM	FIFO watermark interrupt on INT1. Default value 0 (0: disable, 1: enable)
I1_OVERRUN	FIFO overrun interrupt on INT1. Default value 0 (0: disable, 1: enable)

Table 25. CTRL_REG3_A description (continued)

7.1.4 CTRL_REG4_A (23h)

Table 26. CTRL_REG4_A register

BDU BLE FS1 FS0 HR 0 ⁽¹⁾ 0 ⁽¹⁾ SIM
--

1. This bit must be set to '0' for correct operation of the device.

Table 27. CTRL_REG4_A description

BDU	Block data update. Default value: 0 (0: continuous update, 1: output registers not updated until MSB and LSB have been read
BLE	Big/little endian data selection. Default value 0. (0: data LSB @ lower address, 1: data MSB @ lower address)
FS[1:0]	Full-scale selection. Default value: 00 (00: ±2 g, 01: ±4 g, 10: ±8 g, 11: ±16 g)
HR	High-resolution output mode: Default value: 0 (0: high-resolution disable, 1: high-resolution enable)
SIM	SPI serial interface mode selection. Default value: 0 (0: 4-wire interface, 1: 3-wire interface).

7.1.5 CTRL_REG5_A (24h)

Table 28. CTRL_REG5_A register

BOOT F	FIFO_EN			LIR_INT1	D4D_INT1	LIR_INT2	D4D_INT2
--------	---------	--	--	----------	----------	----------	----------

Table 29. CTRL_REG5_A description

BOOT	Reboot memory content. Default value: 0 (0: normal mode, 1: reboot memory content)
FIFO_EN	FIFO enable. Default value: 0 (0: FIFO disable, 1: FIFO enable)
LIR_INT1	Latch interrupt request on INT1_SRC register, with INT1_SRC register cleared by reading INT1_SRC itself. Default value: 0. (0: interrupt request not latched, 1: interrupt request latched)
D4D_INT1	4D enable: 4D detection is enabled on INT1 when 6D bit on INT1_CFG is set to 1.

LIR_INT2 Latch interrupt request on INT2_SRC register, with INT2_SRC register cleared reading INT2_SRC itself. Default value: 0.			
(0: interrupt request not latched, 1: interrupt request latched)			
	D4D_INT2	4D enable: 4D detection is enabled on INT2 when 6D bit on INT2_CFG is set to 1.	

Table 29. CTRL_REG5_A description (continued)

7.1.6 CTRL_REG6_A (25h)

Table 30. CTRL_REG6_A register

I2_CLICKen I2_INT1 I2_INT2 BOOT_I1 P2_ACT H_LACTIVE

Table 31. CTRL_REG6_A description

I2_CLICKen	CLICK interrupt on PAD2. Default value 0. (0: disable, 1: enable)
I2_INT1	Interrupt 1 on PAD2. Default value 0. (0: disable, 1: enable)
I2_INT2	Interrupt 2 on PAD2. Default value 0. (0: disable, 1: enable)
BOOT_I1	Reboot memory content on PAD2. Default value: 0 (0: disable, 1: enable)
P2_ACT	Active function status on PAD2. Default value 0 (0: disable, 1: enable)
H_LACTIVE	Interrupt active high, low. Default value 0. (0: active high, 1: active low)

7.1.7 REFERENCE_A (26h)

Table 32. REFERENCE_A register

Ref7Ref6Ref5Ref4Ref3Ref2Ref1Ref0					-		
		Ref6	Ref4	Ref3	Ref2	Ref1	

Table 33. REFERENCE_A register description

Ref[7:0]	Reference value for interrupt generation. Default value: 0000 0000

7.1.8 STATUS_REG_A (27h)

Table 34. STATUS_A register

ZYXOR	ZOR	YOR	XOR	ZYXDA	ZDA	YDA	XDA
-------	-----	-----	-----	-------	-----	-----	-----

Table 35. STATUS_A register description

ZYXOR	X-, Y-, and Z-axis data overrun. Default value: 0 (0: no overrun has occurred, 1: a new set of data has overwritten the previous data)
ZOR	Z-axis data overrun. Default value: 0 (0: no overrun has occurred, 1: new data for the Z-axis has overwritten the previous data)
YOR	Y-axis data overrun. Default value: 0 (0: no overrun has occurred, 1: new data for the Y-axis has overwritten the previous data)
XOR	X-axis data overrun. Default value: 0 (0: no overrun has occurred, 1: new data for the X-axis has overwritten the previous data)
ZYXDA	X-, Y-, and Z-axis new data available. Default value: 0 (0: a new set of data is not yet available, 1: a new set of data is available)
ZDA	Z-axis new data available. Default value: 0 (0: new data for the Z-axis is not yet available, 1: new data for the Z-axis is available)
YDA	Y-axis new data available. Default value: 0 (0: new data for the Y-axis is not yet available, 1: new data for the Y-axis is available)
XDA	X-axis new data available. Default value: 0 (0: new data for the X-axis is not yet available, 1: new data for the X-axis is available)

7.1.9 OUT_X_L_A (28h), OUT_X_H_A (29h)

X-axis acceleration data. The value is expressed in two's complement.

7.1.10 OUT_Y_L_A (2Ah), OUT_Y_H_A (2Bh)

Y-axis acceleration data. The value is expressed in two's complement.

7.1.11 OUT_Z_L_A (2Ch), OUT_Z_H_A (2Dh)

Z-axis acceleration data. The value is expressed in two's complement.

7.1.12 FIFO_CTRL_REG_A (2Eh)

Table 36. FIFO_CTRL_REG_A register

					-		
FM1	FM0	TR	FTH4	FTH3	FTH2	FTH1	FTH0

Table 37. FIFO_CTRL_REG_A description

FM[1:0]	FIFO mode selection. Default value: 00 (see <i>Table 38</i>)
TR	Trigger selection. Default value: 0 0: trigger event linked to trigger signal on INT1 1: trigger event linked to trigger signal on INT2
FTH[4:0]	Default value: 00000

FM1 FM0		FIFO mode configuration			
0	0	Bypass mode			
0	1	FIFO mode			
1	0	Stream mode			
1	1	Trigger mode			

Table 38. FIFO mode configuration

7.1.13 FIFO_SRC_REG_A (2Fh)

Table 39. FIFO_SRC_REG_A register

WTM OVRN_FIFO EMPTY FSS4 FSS3 FSS2 FSS1	FSS0

7.1.14 INT1_CFG_A (30h)

Table 40. INT1_CFG_A register

		-			- J	-	-
AOI	6D	ZHIE/	ZLIE/	YHIE/	YLIE/	XHIE/	XLIE/
		ZUPE	ZDOWNE	YUPE	YDOWNE	XUPE	XDOWNE

Table 41. INT1_CFG_A description

AOI	AND/OR combination of interrupt events. Default value: 0 (refer to Table 42)
6D	6-direction detection function enabled. Default value: 0 (refer to Table 42)
ZHIE/ ZUPE	Enable interrupt generation on Z high event or on direction recognition. Default value: 0 (0: disable interrupt request, 1: enable interrupt request)
ZLIE/ ZDOWNE	Enable interrupt generation on Z low event or on direction recognition. Default value: 0 (0: disable interrupt request, 1: enable interrupt request)
YHIE/ YUPE	Enable interrupt generation on Y high event or on direction recognition. Default value: 0 (0: disable interrupt request, 1: enable interrupt request.)
YLIE/ YDOWNE	Enable interrupt generation on Y low event or on direction recognition. Default value: 0 (0: disable interrupt request, 1: enable interrupt request.)
XHIE/ XUPE	Enable interrupt generation on X high event or on direction recognition. Default value: 0 (0: disable interrupt request, 1: enable interrupt request.)
XLIE/XDOWNE	Enable interrupt generation on X low event or on direction recognition. Default value: 0 (0: disable interrupt request, 1: enable interrupt request.)

Content of this register is loaded at boot. Write operation at this address is possible only after system boot.

AOI	6D	Interrupt mode			
0	0	OR combination of interrupt events			
0	1	6-direction movement recognition			
1	0	AND combination of interrupt events			
1	1	6-direction position recognition			

Table 42. Interrupt mode

Difference between AOI-6D = '01' and AOI-6D = '11'.

AOI-6D = '01' is movement recognition. An interrupt is generated when the orientation moves from an unknown zone to a known zone. The interrupt signal remains for a duration ODR.

AOI-6D = '11' is direction recognition. An interrupt is generated when the orientation is inside a known zone. The interrupt signal stays until the orientation is inside the zone.

7.1.15 INT1_SRC_A (31h)

Table 43. INT1_SRC_A register

0 ⁽¹⁾ IA ZH ZL YH YL XH XL				_				
	0 ⁽¹⁾	IA	ZH	ZL	YH	YL	ХН	XL

1. This bit must be set to '0' for correct working of the device.

Table 44. INT1_SRC_A description

IA	Interrupt active. Default value: 0 (0: no interrupt has been generated, 1: one or more interrupts have been generated)
ZH	Z high. Default value: 0 (0: no interrupt, 1: Z high event has occurred)
ZL	Z low. Default value: 0 (0: no interrupt, 1: Z low event has occurred)
YH	Y high. Default value: 0 (0: no interrupt, 1: Y high event has occurred)
YL	Y low. Default value: 0 (0: no interrupt, 1: Y low event has occurred)
ХН	X high. Default value: 0 (0: no interrupt, 1: X high event has occurred)
XL	X low. Default value: 0 (0: no interrupt, 1: X low event has occurred)

Interrupt 1 source register. Read-only register.

Reading at this address clears the INT1_SRC IA bit (and the interrupt signal on the INT 1 pin) and allows the refresh of data in the INT1_SRC register if the latched option was chosen.

7.1.16 INT1_THS_A (32h)

		Table	e 45. INT1_	THS_A reg	ister		
0 ⁽¹⁾	THS6	THS5	THS4	THS3	THS2	THS1	THS0

1. This bit must be set to '0' for correct operation of the device.

Table 46. INT1_THS_A description

THS[6:0]	Interrupt 1 threshold. Default value: 000 0000

7.1.17 INT1_DURATION_A (33h)

Table 47. INT1_DURATION_A register

0 ⁽¹⁾	D6	D5	D4	D3	D2	D1	D0

1. This bit must be set to '0' for correct operation of the device.

Table 48. INT1_DURATION_A description

D[6:0] Duration value. Default value: 000 0000
--

D6 - D0 bits set the minimum duration of the Interrupt 1 event to be recognized. Duration steps and maximum values depend on the ODR chosen.

7.1.18 INT2_CFG_A (34h)

Table 49. INT2_CFG_A register							
AOI	6D	ZHIE	ZLIE	YHIE	YLIE	XHIE	XLIE

Table 50. INT2_CFG_A description

AOI	AND/OR combination of interrupt events. Default value: 0 (see <i>Table 51</i>)
6D	6-direction detection function enabled. Default value: 0 (refer to Table 51)
ZHIE	Enable interrupt generation on Z high event. Default value: 0 (0: disable interrupt request, 1: enable interrupt request on measured accel. value higher than preset threshold)
ZLIE	Enable interrupt generation on Z low event. Default value: 0 (0: disable interrupt request, 1: enable interrupt request on measured accel. value lower than preset threshold)
YHIE	Enable interrupt generation on Y high event. Default value: 0 (0: disable interrupt request, 1: enable interrupt request on measured accel. value higher than preset threshold)

	Table 30. INT2_CI G_A description (continued)
YLIE	Enable interrupt generation on Y low event. Default value: 0
	(0: disable interrupt request,1: enable interrupt request on measured accel. value lower than preset threshold)
XHIE	Enable interrupt generation on X high event. Default value: 0(0: disable interrupt request,1: enable interrupt request on measured accel. value higher than preset threshold)
XLIE	Enable interrupt generation on X low event. Default value: 0(0: disable interrupt request,1: enable interrupt request on measured accel. value lower than preset threshold)

Table 50. INT2_CFG_A description (continued)

Table 51. Interrupt mode

AOI	6D	Interrupt mode
0	0	OR combination of interrupt events
0	1	6-direction movement recognition
1	0	AND combination of interrupt events
1	1	6-direction position recognition

Difference between AOI-6D = '01' and AOI-6D = '11'.

AOI-6D = '01' is movement recognition. An interrupt is generated when the orientation moves from an unknown zone to a known zone. The interrupt signal remains for a duration ODR.

AOI-6D = '11' is direction recognition. An interrupt is generated when the orientation is inside a known zone. The interrupt signal remains until the orientation is inside the zone.

7.1.19 INT2_SRC_A (35h)

Table 52. INT2_SRC_A register									
0 ⁽¹⁾	IA	ZH	ZL	YH	YL	ХН	XL		

1. This bit must be set to '0' for correct operation of the device.

Table 53. INT2_SRC_A description

IA	Interrupt active. Default value: 0 (0: no interrupt has been generated, 1: one or more interrupts have been generated)
ZH	Z high. Default value: 0 (0: no interrupt, 1: Z high event has occurred)
ZL	Z low. Default value: 0 (0: no interrupt, 1: Z low event has occurred)
YH	Y high. Default value: 0 (0: no interrupt, 1: Y high event has occurred)

Table 53. INT2_SRC_A description (contin	nued)
--	-------

YL	Y low. Default value: 0 (0: no interrupt, 1: Y low event has occurred)
хн	X high. Default value: 0 (0: no interrupt, 1: X high event has occurred)
XL	X Low. Default value: 0 (0: no interrupt, 1: X low event has occurred)

Interrupt 2 source register. Read-only register.

Reading at this address clears the INT2_SRC IA bit (and the interrupt signal on the INT2 pin) and allows the refresh of data in the INT2 SRC register if the latched option was chosen.

7.1.20 INT2_THS_A (36h)

Table 54. INT2_THS_A register									
0 ⁽¹⁾ THS6 THS5 THS4 THS3 THS2 THS1 THS0									
1 This hit m	This hit must be set to '0' for correct operation of the device								

1. This bit must be set to '0' for correct operation of the device.

Table 55. INT2_THS_A description

THS[6:0]	Interrupt 2 threshold. Default value: 000 0000
----------	--

7.1.21 INT2_DURATION_A (37h)

Table 56. INT2 DURATION A register

							-
0 ⁽¹⁾	D6	D5	D4	D3	D2	D1	D0

1. This bit must be set to '0' for correct operation of the device.

Table 57. INT2_DURATION_A description

D[6:0]	Duration value. Default value: 000 0000
--------	---

D6 - D0 bits set the minimum duration of the Interrupt 2 event to be recognized. Duration time steps and maximum values depend on the ODR chosen.

7.1.22 CLICK_CFG_A (38h)

Table	58.	CLICK_	_CFG_	_A register	
-------	-----	--------	-------	-------------	--

ZD ZS YD YS XD XS

Table 59. CLICK_CFG_A description

ZD	Enable interrupt double-click on Z-axis. Default value: 0 (0: disable interrupt request, 1: enable interrupt request on measured accel. value higher than preset threshold)
ZS	Enable interrupt single-click on Z-axis. Default value: 0 (0: disable interrupt request, 1: enable interrupt request on measured accel. value higher than preset threshold)
YD	Enable interrupt double-click on Y-axis. Default value: 0 (0: disable interrupt request, 1: enable interrupt request on measured accel. value higher than preset threshold)
YS	Enable interrupt single-click on Y-axis. Default value: 0 (0: disable interrupt request, 1: enable interrupt request on measured accel. value higher than preset threshold)
XD	Enable interrupt double-click on X-axis. Default value: 0 (0: disable interrupt request, 1: enable interrupt request on measured accel. value higher than preset threshold)
XS	Enable interrupt single-click on X-axis. Default value: 0 (0: disable interrupt request, 1: enable interrupt request on measured accel. value higher than preset threshold)

7.1.23 CLICK_SRC_A (39h)

Table 60. CLICK_SRC_A register

_					-		
	 IA	DCLICK	SCLICK	Sign	Z	Y	Х

Table 61. CLICK_SRC_A description

IA	Interrupt active. Default value: 0 (0: no interrupt has been generated, 1: one or more interrupts have been generated)
DCLICK	Double-click enable. Default value: 0 (0: double-click detection disable, 1: double-click detection enable)
SCLICK	Single-click enable. Default value: 0 (0: Single-click detection disable, 1: single-click detection enable)
Sign	Click sign. 0: positive detection, 1: negative detection
Z	Z-click detection. Default value: 0 (0: no interrupt, 1: Z high event has occurred)
Y	Y-click detection. Default value: 0 (0: no interrupt, 1: Y high event has occurred)
Х	X-click detection. Default value: 0 (0: no interrupt, 1: X high event has occurred)

7.1.24 CLICK_THS_A (3Ah)

		Table	62. CLICK	_THS_A re	gister		
	Ths6	Ths5	Ths4	Ths3	Ths2	Ths1	Ths0

Table 63. CLICK_SRC_A description

Ths[6:0]	Click threshold. Default value: 000 0000

1 LSB = full-scale / 128. Ths6 through Ths0 define the threshold which is used by the system to start the click-detection procedure. The threshold value is expressed over 7 bits as an unsigned number.

7.1.25 TIME_LIMIT_A (3Bh)

Table 64. TIME_LIMIT_A register

6 15 14 13 12 111 10	 	-	 —	0		-
	 TLI6	TLI5	I LI3	TLI2	TLI1	TLI0

Table 65. TIME_LIMIT_A description

TLI[6:0]	Click time limit. Default value: 000 0000	
----------	---	--

1 LSB = 1/ODR. TLI6 through TLI0 define the maximum time interval that can elapse between the start of the click-detection procedure (the acceleration on the selected channel exceeds the programmed threshold) and when the acceleration falls below the threshold.

7.1.26 TIME_LATENCY_A (3Ch)

		Table 6	6. TIME_LA	TENCY_A	register		
TLA7	TLA6	TLA5	TLA4	TLA3	TLA2	TLA1	TLA0

Table 67. TIME_LATENCY_A description

TLA[7:0]	Double-click time latency. Default value: 0000 0000
----------	---

1 LSB = 1/ODR. TLA7 through TLA0 define the time interval that starts after the first click detection where the click-detection procedure is disabled, in cases where the device is configured for double-click detection.

7.1.27 TIME_WINDOW_A (3Dh)

Table (68. TIME	_WINDOW_	A register
	••••		

TW7 TW6 TW5 TW4 TW3 TW2 TW1 TW0

Table 69. TIME_WINDOW_A description

TW[7:0]	Double-click time window
---------	--------------------------

1 LSB = 1/ODR. TW7 through TW0 define the maximum interval of time that can elapse after the end of the latency interval in which the click detection procedure can start, in cases where the device is configured for double-click detection.

7.2 Magnetic field sensing register description

7.2.1 CRA_REG_M (00h)

Table 70. CRA_REG_M register

TEMP_EN 0 ⁽¹⁾ 0 ⁽¹⁾ DO2 DO1 DO0 0 ⁽¹⁾ 0 ⁽¹⁾							
	I IEMP EN	0 ⁽¹⁾	11112	1)()1	DO0	0 ⁽¹⁾	0 ⁽¹⁾

1. This bit must be set to '0' for correct operation of the device.

Table 71. CRA_REG_M description

TEMP_EN	Temperature sensor enable. 0: temperature sensor disabled (default), 1: temperature sensor enabled
DO[2:0]	Data output rate bits. These bits set the rate at which data is written to all three data output registers (refer to <i>Table 72</i>). Default value: 100

Table 72. Data rate configurations

DO2	DO1	DO0	Minimum data output rate (Hz)			
0	0	0	0.75			
0	0	1	1.5			
0	1	0	3.0			
0	1	1	7.5			
1	0	0	15			
1	0	1	30			
1	1	0	75			
1	1	1	220			

7.2.2 CRB_REG_M (01h)

		Table	73. CRB_	REG_M reg	gister		
GN2	GN1	GN0	0 ⁽¹⁾				

1. This bit must be set to '0' for correct operation of the device.

Table 74. CRB_REG_M description

GN[2:0]	Gain configuration bits. The gain configuration is common for all channels (refer to <i>Table 75</i>)
---------	--

			1001	e / 5. Gain setting	9	
GN2	GN1	GN0	Sensor input field range [Gauss]	Gain X, Y, and Z [LSB/Gauss]	Gain Z [LSB/Gauss]	Output range
0	0	1	±1.3	1100	980	
0	1	0	±1.9	855	760	
0	1	1	±2.5	670	600	0xF800–0x07FF
1	0	0	±4.0	450	400	(-2048 to +2047)
1	0	1	±4.7	400	355	
1	1	0	±5.6	330	295	
1	1	1	±8.1	230	205	

Table 75. Gain setting

7.2.3 MR_REG_M (02h)

Table 76. MR_REG_M register

0 ⁽¹⁾	MD1	MD0					

1. This bit must be set to '0' for correct operation of the device.

Table 77. MR_REG_M description

MD[1:0]	Mode select bits. These bits select the operation mode of this device (refer to <i>Table 78</i>)
---------	---

Table 78. Magnetic sensor operating mode

MD1	MD0	Mode
0	0	Continuous-conversion mode
0	1	Single-conversion mode
1	0	Sleep mode. Device is placed in sleep mode
1	1	Sleep mode. Device is placed in sleep mode

7.2.4 OUT_X_H_M (03), OUT_X_L_M (04h)

X-axis magnetic field data. The value is expressed as two's complement.

7.2.5 OUT_Z_H_M (05), OUT_Z_L_M (06h)

Z-axis magnetic field data. The value is expressed as two's complement.

7.2.6 OUT_Y_H_M (07), OUT_Y_L_M (08h)

Y-axis magnetic field data. The value is expressed as two's complement.

7.2.7 SR_REG_M (09h)

Table 79. SR_REG_M register

LOCK DRDY

Table 80. SR_REG_M description

LOCK	Data output register lock. Once a new set of measurements is available, this bit is set when the first magnetic file data register has been read.
DRDY	Data-ready bit. This bit is when a new set of measurements is available.

7.2.8 IRx_REG_M (0Ah/0Bh/0Ch)

Table 81. IRA_REG_M register

0 1 0 0 1 0 0		-						
	0	1	0	0	1	0	0	0

Table 82. IRB_REG_M register

0 0) 1	1	0	1	0	0
-----	-----	---	---	---	---	---

Table 83. IRC_REG_M register

0 0 1 1 0 0 1

7.2.9 TEMP_OUT_H_M (31h), TEMP_OUT_L_M (32h)

Table 84. TEMP_OUT_H_M register

TEMP11	TEMP10	TEMP9	TEMP8	TEMP7	TEMP6	TEMP5	TEMP4
--------	--------	-------	-------	-------	-------	-------	-------

Table 85. TEMP_OUT_L_M register

TEMP3 TEMP2 TEMP1 TEMP0				
-------------------------------	--	--	--	--

Table 86. TEMP_OUT resolution

TEMP[11:0]	Temperature data (8 LSB/deg - 12-bit resolution). The value is expressed as
	two's complement.

8 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

9 **Revision history**

Та	ble 87.	Document	revision	history	

······································				
Date	Revision	Changes		
21-Apr-2011	1	Initial release		
05-Nov-2013	2	Document status promoted from preliminary to production data Added ESD to <i>Table 7</i> Minor textual updates throughout document		

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

